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Abstract

Coastal communities are projected to experience 50–100 days of high-tide flooding (HTF) annually by
the mid-2040s. While such chronic inundation would pose serious threats to livability, surprisingly little
is known about how these risks are priced into coastal housing markets. Leveraging plausibly random
variation in HTF occurrences, we find that exposure to HTF depresses both rents and home prices, with
the impact on rents being three times larger—suggesting that homebuyers anticipate future recovery
in rental values. We show that this optimism likely stems from expectations of future adaptation,
particularly by governments.
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1 Introduction

With rising sea levels, coastal communities in the U.S. face a growing threat from high-tide flooding

(HTF)—the intermittent inundation of low-lying areas during high tides (Sweet 2018). Projections

indicate that by the mid-2040s, the number of HTF days will more than double, reaching 50 to 100

days annually (Thompson et al. 2021). Because HTF seriously impairs mobility and thereby disrupts

daily life and economic activity (Lee et al. 2024), such chronic and recurrent exposure will threaten

the livability of coastal areas. Yet, surprisingly little is known about how these risks are priced into

coastal housing markets.

In this paper, we provide the first empirical evidence on how HTF risk affects coastal housing

markets. For this, we leverage variation in HTF occurrences as a source of information shocks that

affect individuals’ beliefs about HTF risk. This strategy builds on two key insights from the litera-

ture: first, individuals use past exposure to similar hazards as a source of information to update their

beliefs about future environmental risks (Bin and Landry 2013, Deryugina 2013, Gallagher 2014,

Hong et al. 2019, Choi et al. 2020); and second, that while HTF rarely results in direct asset losses,

it significantly depresses rental values—consistent with market responses to perceived risk (Lee et al.

2024).

To guide our empirical analysis, we begin with a simple Gordon growth model where housing

prices reflect the present value of current and future rental income (Gordon 1962). This framework il-

lustrates how the relative impact of HTF information shock on rents versus housing prices can reveal

individuals’ expectations about future HTF risk. For example, if a recent increase in HTF days has

a larger effect on housing prices than on rents, it suggests that individuals expect rents to continue

declining—perhaps because they interpret the flooding as a signal of accelerating sea level rise, in

line with scientific projections (Thompson et al. 2021). In contrast, if the impact is greater on rents

than on prices, it implies that individuals anticipate a future rebound in rental values, likely because

they interpret the shock as either transitory noise or as persistent but manageable through future

adaptation.

To take these insights to data, we compile daily water level data from 84 NOAA gauge stations

across coastal states in the contiguous US and compare them with the gauge-specific flood thresholds.

We then match coastal zip codes to the nearest gauge station to construct a zip code level panel
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of HTF events. This data is linked with monthly zip code level data on housing prices, rents, and

housing inventory. To explore mechanisms, we use survey data on local climate change opinions. For

identification, we exploit plausibly random variations in HTF occurrences.

We start our empirical exercise by estimating the impact of subjective beliefs about HTF risk

on housing prices, using the number of HTF days in the past 12 months as a source of information

shock. Our analysis shows that exposure to one additional HTF day (in the past 12 months) low-

ers housing price by 0.09% or $439 at the sample mean home value. We then benchmark this effect

against the impact of HTF on rental rates as documented in a companion paper (Lee et al. 2024),

and find that only about one-third of the adjustment in rents is reflected in housing prices. Conse-

quently, the price-rent ratio rises by 0.14% for each additional HTF day, suggesting that the housing

market anticipates a rebound in future rents.

To assess whether this muted housing price response might be explained by the tendency for prices

to adjust more slowly than transaction volumes, we examine HTF impacts on housing inventories

(Keys and Mulder 2020). We find that the number of days on market as well as the number of new

listings remain largely unchanged, while the number of active listings does not seem to increase,

suggesting that the limited price adjustment is unlikely to be driven by reduced transaction activity.

We also show that our main findings are robust to a range of alternative specifications—including the

use of additional covariates, more granular fixed effects, and different temporal or spatial samples—

as well as to alternative measures of the information shock, such as lagged HTF exposure over the

past 48 months or scientific forecasts of future HTF frequency.

Finally, we investigate the source of market optimism about future rents—specifically, whether it

reflects a belief that shock in HTF exposure are temporary and expected to revert to normal levels,

or whether it stems from local optimism about future mitigation and resilience efforts. To do this, we

test whether the impact of recent HTF exposure on the price-rent ratio is larger in (1) areas with low

serial correlation in HTF (i.e., where a shock is more likely to be viewed as transitory), or (2) areas

where individuals hold stronger expectations about future adaptation. Our results show that the re-

sponse of the price–rent ratio does not vary with the degree of serial correlation; instead, the impact

is more pronounced in areas where individuals express stronger confidence in future adaptation, indi-

cating that optimism about mitigation efforts underlies the observed market response. Importantly,

given that prevalent adaptation approaches to HTF—and sea level rise more generally—often involve
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large-scale public investment such as seawalls, these expectations closely reflect beliefs about future

government intervention (EPA 2009, IPCC 2022).

Related literature. This paper contributes to two different strands of literature. First, it is related

to a large literature studying the impact of various climate risks on the housing market (Hallstrom

and Smith 2005, McCoy and Walsh 2018, Gibson and Mullins 2020, Ma et al. 2024). We add to this

literature by providing the first evidence on the relationship between housing prices and HTF, a risk

that has received relatively little attention despite projections that it will become a defining feature

of life in many coastal communities in the near future (Thompson et al. 2021, Logan et al. 2023).

Within this literature, this paper is most closely related to studies on sea level rise (SLR) risk

(Bernstein et al. 2019, Baldauf et al. 2020, Murfin and Spiegel 2020, Giglio et al. 2021, Bakkensen

and Barrage 2021). Prior work typically models SLR risk as a long-term threat, with impacts pro-

jected to materialize around the end of the century (e.g., by 2100). More importantly, it often treats

SLR as a binary outcome—either permanent inundation or no inundation—thereby overlooking

intermediate-stage risks and behavioral responses that may emerge well before full inundation. In

contrast, we focus on HTF—an intermittent form of inundation that is expected to intensify and

ultimately lead to permanent inundation. By allowing time-varying information shocks, we allow risk

perceptions and adaptation expectations to evolve over time, enabling housing market responses dur-

ing these intermediate stages. Juxtaposing our findings with previous studies suggests that markets

may treat chronic and permanent flood risks as fundamentally different—despite their shared physi-

cal origins. This disconnect raises important questions about whether housing markets are accurately

internalizing the full trajectory of SLR risk.

Second, and more broadly, this paper extends the existing literature that studies the source of mar-

ket underreaction regarding climate risk. While earlier works have emphasized the role of imperfect

information and/or or behavioral biases (Bin and Landry 2013, Gallagher 2014, Hino and Burke

2021, Bakkensen and Barrage 2021, Gourevitch et al. 2023, Lee 2024), our findings suggest that ex-

pectation about future adaptation opportunities, especially government policy intervention could

attenuate price adjustment. This resonates with recent works that have documented moral hazard

due to the federal government’s existing disaster policies (Gregory 2017, Kousky et al. 2018, Baylis

and Boomhower 2023, Peralta and Scott 2024).

4



This paper proceeds as follows. Section 2 introduces conceptual framework to guide our empirical

analysis. Section 3 provides background on the HTF, details the data sources, and provides summary

statistics. Section 4 analyzes the impact of recent HTF exposure on housing market, while Section 5

explores the mechanism. Section 6 concludes.

2 Conceptual Framework

To understand how information shocks shape housing prices and rents, and what they reveal about

individuals’ beliefs regarding HTF risk, we consider a simple Gordon model in equation (1) (Gordon

1962). In this framework, housing price P in time t = 0 is determined by the discounted sum of fu-

ture rental income where rental income is growing at rate g.1 The capitalization rate, or the implied

rate of return, is r − g, where r is the opportunity cost of capital. For owner occupied units, future

rental income can be interpreted as utility from flow of housing services.

P0 = R1
r − g

(1)

Suppose that there is an information shock at t = 0 that increases the perceived HTF risk. Be-

cause HTF disrupts daily life and economic activity, a higher HTF risk will reduce R1 (Lee et al.

2024). If this shock does not affect g, namely if homebuyers believe that the rent will continue to

grow at the same rate, the impact of the information shock on housing prices and rents should be

identical.2

Alternatively, if homebuyers interpret the information shock as a signal of increasing risk over time,

such as accelerating sea level rise that may lead to permanent inundation at some future time T , it

will lower the rent growth rate as well (∆g < 0). In this case, the impact on the housing price will

exceed the impact on rents. Conversely, if homebuyers expect rents to rebound despite an initial

decline (∆R1 < 0), either because they believe future HTF frequency will decline or anticipate

effective adaptation, the rent growth rate will rise (∆g > 0). Notably, given commonly discussed
1R1 is the only rent term used directly in equation (1): Rt for t > 1 are incorporated through the constant growth

rate g.
2While we interpret market responses to the information shock primarily through changes in g, we remain agnostic

about whether the adjustment occurs through expectations of rent growth (g), the discount rate (r), or both. For
instance, higher perceived HTF risk could raise r, as heightened systemic volatility or uncertainty increases the required
rate of return, or lower g, if rents are expected to grow more slowly—or both. Each of these effects increases r − g and
thereby reduces P0; vice versa holds when risk perceptions decline or adaptation is expected.
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strategies for mitigating sea level rise risk—such as seawall construction or wetland restoration, the

expectations about adaptation are often closely tied to expectations of public investment (IPCC

2022).3

Take theory to data. The key insight from the theoretical discussion is that by comparing the

impact of an information shock on current housing prices and rents, we can infer how individuals

perceive the persistence of HTF risk. Our primary empirical analogue of the information shock is

past HTF exposure. This approach follows a voluminous literature showing that individuals use

past exposure to similar hazards as a source of information to update their beliefs about future en-

vironmental risks (Bin and Landry 2013, Deryugina 2013, Gallagher 2014, Hong et al. 2019, Choi et

al. 2020). While we use the number of HTF days in the past 12 months as our baseline proxy, we

demonstrate that our results are robust to alternative choices, including lagged HTF counts over the

past 48 months or scientific forecasts of HTF frequency.

One potential concern with interpreting recent HTF exposure as an information shock is that

HTF could also cause direct asset losses, confounding the information channel with physical damage

effects. Indeed, prior studies have used “near-miss hurricanes” to isolate pure information effects

from physical destruction (Hallstrom and Smith 2005). However, as shown by Lee et al. (2024), HTF

events rarely cause physical damage to property, which allows us to interpret the observed housing

market response to HTF as an information effect—by altering expectations about future HTF risk.

3 Background and Data

3.1 High Tide Flooding

HTF: measurements and trends.4 HTF—also known as recurrent tidal flooding, sunny day flooding,

or nuisance flooding—refers to the temporary inundation of low-lying coastal areas during periods of

exceptionally high tides, even in the absence of storms or other severe weather events. To measure

the occurrence of HTF at the gauge-day level, we follow the National Oceanic and Atmospheric

Administration (NOAA), and define HTF as an event where the daily maximum water level exceed
3For a detailed discussion of these strategies, see IPCC (2022).
4Much of the background discussion on HTF in this section closely follows Lee et al. (2024), which provides a more

detailed treatment of HTF patterns, definitions, trends, and idenfitication properties.
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Figure 3.1: HTF Measurement and its Characteristics. Panel (a) illustrates HTF measurement using Gauge ID
8443970 in 2018. Panel (b) shows the annual number of days with HTF during 2015–21 by region.

the “minor” but remain below the “moderate” flood threshold (Sweet 2018).

To illustrate, Figure 3.1 (a) overlays the 2018 time series of daily maximum water levels from a

gauge station in Boston with its site-specific flood thresholds. As shown in the figure, July 15 is an

example of a day that experienced HTF. Notably, the highlighted grey area (March 4) illustrates

that water levels can exceed the minor flood threshold as either a precursor to or a residual effect of

a larger flood event. To avoid misclassifying such instances as HTF (i.e., avoid false positives), we

treat days within a ± 3-day window of a moderate or major flood event as non-HTF, even if water

levels exceed the minor threshold. We also separately document dates when water levels exceed the

moderate or major thresholds to control for the impact of large floods in our robustness checks.

To measure HTF spatially—that is, to identify areas subject to HTF—we use NOAA’s HTF in-

undation map.5 This map delineates areas projected to be inundated when water levels reach the

site-specific minor threshold. The mapping uses a “bathtub” approach: any location where land

elevation is lower than the modeled water surface is classified as inundated. The water surface is

constructed by interpolating across tide gauge stations at the minor flood threshold.

Appendix Figure A.1 illustrates the map for the Mid-Atlantic region. Notably, inundated areas

are not limited to locations directly adjacent to the ocean; in some cases, they extend far inland

via connected water systems—most notably tidal rivers, such as the Delaware and Hudson Rivers—
5Accessed at https://coast.noaa.gov/slrdata/ on July 11, 2022. We use the Flood Frequency product. For further

details on mapping methodology, see https://coast.noaa.gov/data/digitalcoast/pdf/slr-high-tide-flooding.pdf.
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where tidal influences can propagate well upstream.6

It is worth highlighting that the mapping process underscores the similarities between HTF and

permanent inundation events. Specifically, the HTF inundation map is produced using the same

methodology as NOAA’s Sea Level Rise (SLR) inundation map products, which have been widely

used in prior studies examining permanent inundation risks (Bernstein et al. 2019, Baldauf et al.

2020, Giglio et al. 2021). Specifically, for both products, inundation is determined by the condition

“Inundated = (Land Elevation ≤ Water Surface)”. For the HTF map, the water surface is defined as

mean higher high water (MHHW) plus the site-specific minor flood threshold; for the SLR map, it

is MHHW plus the selected (e.g., 2 ft) SLR scenario (NOAA 2017, n.d.).7 The key difference is that

HTF maps capture intermittent flooding events, while SLR maps represent permanent inundation.

While tidal movement is not a new phenomenon, the frequency of HTF has risen sharply over the

past two decades across the contiguous US, primarily due to sea level rise (Sun et al. 2023). Further,

this trend is expected to accelerate—by mid-2040, many cities along the Atlantic Coast are projected

to experience 50–100 of HTF annually (Thompson et al. 2021).

HTF: impacts and adaptation strategies. Existing anecdotal and scientific evidence suggests that

HTF seriously disrupts daily life, primarily by impairing road networks. For instance, individuals

experience loss of income (e.g., fewer patron visits to restaurants), loss of leisure (e.g., giving up

outdoor exercise at a park), loss of learning (e.g., children have difficulty getting to school), health

risks (e.g., delayed ambulance services) or other nuisances (Flechas and Staletovich 2015, Alvarez

and Robles 2016, Kensinger 2017, Hino et al. 2019, Mazzei 2019, Hauer et al. 2021, Bittle 2022,

Choi-Schagrin and Sanders 2023, Hauer et al. 2023). Despite these disruptions, asset losses from

HTF are minimal (Lee et al. 2024).

Given that sea level rise is projected to accelerate throughout much of this century (IPCC 2022),

adaptation to HTF is becoming increasingly important. Aerts et al. (2014) classifies adaptation

strategies into two broad categories: reducing tidal flooding occurrence through engineering and

nature-based protection measures, and reducing exposure by encouraging migration or retreat. In

the US, many local governments have already committed to substantial investments in “protection”
6Consistent with this, local news outlets have reported instances of tidal flooding in cities such as Philadelphia and

Washington, D.C., even though they are not directly located on the open ocean (Muyskens 2023, Wood 2024).
7The second document can be accessed at https://coast.noaa.gov/data/digitalcoast/pdf/slr-high-tide-flooding.pdf

(accessed on Apr 8, 2025).
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infrastructure. For example, the City of Miami Beach has invested over $400 million in pumps, el-

evated roads, and seawalls (Flechas and Staletovich 2015), while New York City has announced a

citywide resiliency program with an estimated cost of $20 billion (City of New York 2013). These

large-scale infrastructure projects are particularly attractive to property owners, as they help preserv-

ing housing values while spreading costs more broadly across taxpayers. In contrast, retreat-based

strategies—often implemented through zoning regulations or stricter building codes—can impose

significant costs on individual homeowners, especially through reductions in property values, which

may partly explain why the protection approach is much more widespread in many urban coastal

areas around the world (IPCC 2022).

HTF as a research design. Figure 3.1 (b) shows that even after aggregating 84 gauge stations into

three regional groups—thereby removing gauge-specific idiosyncrasies—substantial temporal vari-

ation in HTF frequency remains throughout our study period (2015—21). For example, the North

Atlantic region experienced only 3 HTF days in 2015 but 11 in 2018. Moreover, these temporal fluc-

tuations differ across regions, introducing an additional source of identifying variation. Appendix

Figures A.2 (a) and (b) further demonstrate that, after controlling for year and gauge fixed effects,

HTF occurrences exhibit only weak serial correlation, resembling a random draw from an underlying

distribution.

These variations are similar in spirit to numerous studies that leverage weather shocks—such as

temperature, precipitation, and windstorms, which are often modeled as random spatial realizations

and “offer strong identification properties” (Dell et al. 2014). Indeed, variation in HTF occurrence—

like other weather shocks—is driven by multiple interrelated physical factors, including large-scale

atmospheric and oceanic patterns such as the El Niño–Southern Oscillation (ENSO), as well as local-

ized conditions like wind speed, water density, and tidal forces (Sweet 2018).

3.2 Data Description

Coastal flood history. We construct a coastal flood history dataset by comparing NOAA’s verified

daily high water level data, retrieved using R package “rnoaa”, to gauge-specific flood thresholds.

Specifically, we use 84 gauge stations in the contiguous US that have flood thresholds from Sweet
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Figure 3.2: Map of the Study Area. This figure shows our main sample, which consists of 1,469 zip codes that
have non-missing ZHVI and ZORI data over 2015–21 and have an overlap with the NOAA inundation map.

(2018) (See Appendix Figure A.3 for gauge locations).8 As detailed in Section 3.1, we compare the

time series of daily water levels to gauge-specific flood thresholds and define a binary indicator that

equals 1 when the daily water level falls between the minor and moderate flood thresholds. To con-

nect zip codes with HTF events, we match each zip code to the nearest NOAA gauge station.

Housing market. For housing prices and rents, we use the Zillow Home Value Index (ZHVI) and

the Zillow Observed Rent Index (ZORI), respectively, at the ZIP code by month level. These are

dollar-denominated, constant-quality measures of typical home values and asking rents in a given

region.9 Because both ZHVI and ZORI are quality-adjusted, the price–rent ratio can be interpreted

as reflecting the value of a comparable, representative property (Gupta et al. 2022). This enables a

direct comparison of the impact of HTF on housing prices and rents. Juxtaposing ZHVI and ZORI

to analyze housing market dynamics has been widely adopted in recent literature (Gupta et al. 2022,

Brueckner et al. 2023, Ramani et al. 2024).

To track housing inventory, we use monthly data from Realtor for the same set of zip codes in our

main sample over the July 2016, which is the month data starts, to December 2021. Specifically, we

focus on new and active listing counts and median days a property is on the market following Gupta
8Ad hoc flood thresholds (i.e., minor, moderate, and major) for each gauge are typically set by local stakeholders,

such as NOAA Weather Forecast Offices and city emergency managers, based on their local knowledge of the relation-
ship between water levels and flood impacts. Sweet (2018) produces objective and nationally consistent gauge-specific
flood thresholds by applying statistical methods to these ad hoc thresholds.

9For more detail, see https://www.zillow.com/research/methodology-neural-zhvi-32128/ (accessed March 7, 2023)
and https://www.zillow.com/research/methodology-zori-repeat-rent-27092/ (accessed March 2, 2023).
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et al. (2022).

Climate opinion. To explore mechanism, we collect county-level climate opinion data from the

Yale Climate Opinion Survey. The data documents climate change beliefs, risk perceptions, policy

preferences based on national survey data (n > 28, 000) gathered by the Yale Program on Climate

Change Communication and the George Mason Center for Climate Change Communication (Howe et

al. 2015).10 The survey was conducted in 2014, 2016, 2018–21, and we collapse across different years

to leverage county-level cross sectional variations in various climate opinions. While the data asks

rich set of questions, we focus on three variables that are pertaining to beliefs about climate change

and expectations on adaptation.11 These variables are (1) the share of people who believe that the

President should do more to address climate change; (2) the share of respondents who believe that

climate change will start to harm people in the US within the next 10 years; and (3) the share who

report being worried about climate change.

3.3 Summary Statistics

Table 3.1 shows summary statistics for key variables used in our empirical exercises from our main

sample, which consists of 1,469 zip codes within the 22 coastal states in the contiguous US that have

both housing price and rental information over the March 2015 to December 2021 period, and an

overlap with the NOAA inundation map (see Figure 3.2).12 Panel A presents summary statistics for

housing market variables. A few points are worth noting. First, an average housing price is $463,772

over the sample period. This is more than twice higher than an average price for all other zip codes

in the Zillow housing price dataset that are outside of our main sample ($216,553). The difference

in the housing price (at least partly) reflects a premium for higher amenity of being closer to the

ocean. Lee et al. (2024) documents a similar pattern for rental rates as well. We leverage temporal

variations in HTF occurrences to control for these time-invariant unobserved characteristics.

Second, the median distance between a zip code centroid and a NOAA gauge station is 13.6 miles,

indicating that HTF exposure is well-measured for most zip codes. For some zip codes that are af-
10More details can be found at https://climatecommunication.yale.edu/visualizations-data/ycom-us/ (accessed on

May 7, 2023).
11Because the survey does not include a direct question about expectations for future adaptation, we construct a

proxy measure using these variables. See Section 5.1 for details.
12These states are AL, CA, CT, DC, DE, FL, GA, LA, MA, MD, ME, MS, NC, NJ, NY, OR, PA, RI, SC, TX, VA,

and WA.
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Table 3.1: Summary Statistics for Key Variables

Variables Min. Max. Median Mean Std.Dev. N

Panel A: Housing Market
Housing Price (CPI Adjusted) 17,977 3,984,326 342,061 463,772 395,246 119,043
Annual Rent (CPI Adjusted) 150 391,867 18,349 20,384 12,276 119,043
Active Listing Counts 0 2,646 76 118 145 95,953
New Listing Counts 0 540 38 45.7 34.9 95,953
Median Days on the Market 1 340 56 58 25.1 95,953
Distance between Zip Code and Gauge 0.3 122 13.6 20.9 21.8 119,043

Panel B: Flood Exposures
N High Tide Floods (in Past 12 Months) 0 44 5 5.6 4.9 119,043
N Larger Floods (in Past 12 Months) 0 11 0 0.48 0.99 119,043

Panel C: Climate Change (C.C) Opinions
Believe Harm in 10 Years from C.C (%) 36.9 64.7 54.6 54.6 5.7 119,043
Worried about C.C (%) 44.5 78 64.5 64.2 7.1 119,043
President should Do More on C.C (%) 42.7 71.6 61.4 61.1 5.5 119,043

fected by tidal rivers, the distance can be much larger. In Section 4, we show that our findings re-

main robust even when we restrict the sample to the Northeast, a region with a denser network of

gauge stations.

Panel B shows that the number of days with HTF in the past 12 months is an order of magnitude

larger than that of moderate or major floods. Also, the difference between the mean (5.6) and me-

dian (5) number of days with HTF suggests that the average number of days with HTF is unlikely to

be driven by a few extreme values.

4 Effect of High Tide Flooding on the Housing Market

Estimation framework. To estimate the impact of the change in subjective HTF risk on housing

market outcomes, we estimate the regression model in equation (3).13

13Note, our main specification implicitly embeds an impulse-response function in which each month’s flood exposure
has an identical marginal effect on current outcomes. Specifically, if we write Fzmt =

∑11
k=0 f̃z,t−k, where f̃ is the

number of HTF days in a given month, then equation (3) can be interpreted as a constrained version of the distributed
lag model:

log(Yczmt) =
11∑

k=0

βkf̃z,t−k + αz + θct + θm + ϵczmt (2)

under the restriction that βk = β for all k. In this case, the model simplifies as:
∑11

k=0 βkf̃z,t−k = β
∑11

k=0 f̃z,t−k =
βFzmt, and thus β =

∑11
k=0 βk. As shown in Appendix Figure A.4, the empirical impulse-response patterns are broadly

consistent with βk = β, and thus we use a more parsimonious model.
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log(Yczmt) = βFzmt + αz + θct + θm + ϵczmt (3)

Here Yczmt is various outcome variables such as the logged housing price, logged rent, and logged

days on the market, for zip code z within county c in month m at year t. The key independent vari-

able is Fzmt, the number of days with HTF in the past 12 months for a zip code z at time mt. This

is our empirical measure of information shock from Section 2, which subsequently affects perceived

HTF risk. We also explore alternative measures of information sources such as scientific forecasts on

future HTF frequencies or a longer belief formation window for robustness checks. β captures the

impact of being exposed to an additional day of HTF in the past 12 months on Yczmt, which cap-

tures the reduced form relationship between information shock and housing outcomes since we do not

directly observe beliefs.

We also include a rich set of fixed effects. Zip code fixed effects αz control for time-invariant zip

code level characteristics, which allow us to leverage plausibly random deviations from average HTF

exposure for each zip code. We also include year by county (θct) and month (θm) fixed effects, which

accounts for local economic shocks in a given year and seasonality in the housing market and HTF

occurrences, respectively.

Our baseline model does not include any further controls than these set of fixed effects because

HTF is a plausibly random event that is driven by physical process, which provides strong identi-

fication properties (Dell et al. 2014). Nonetheless, we also show that our results are robust to the

inclusion of time-varying zip code-level characteristics such as the number of days with moderate or

major flood events in the past 12 months, the fraction of population with college degree, the fraction

of minority populations, median income, and the fraction of rental units, or to the inclusion of more

granular fixed effects.

Results. Table 4.1 shows the impact of the HTF on housing market outcomes. The estimated

coefficient in column (1) indicates that being exposed to one additional day of HTF within the past

12 months reduces housing prices by 0.09%, or $439 at the sample mean housing price. Notably,

discussions in Section 2 implies that $439 is the present value of expected future rental income losses

due to belief updating in response to an increase in recent HTF exposure.

In column (2), we reproduce the impact of HTF on rental rates from Lee et al. (2024), estimated

13



Table 4.1: Effect of High-Tide Flooding on the Housing Market

(1) (2) (3) (4) (5) (6)

Dependent Var.: log(Price) log(Rent) log (P/R) log (Active
Listings)

log (New
Listings) log (DOM)

HTF Days (Past 12 Months) -0.0009*** -0.0023*** 0.0014*** -0.0024 -0.0004 0.0003
(0.0002) (0.0004) (0.0003) (0.0015) (0.0013) (0.0008)

Zip Code FE Yes Yes Yes Yes Yes Yes
Month FE Yes Yes Yes Yes Yes Yes
Year-County FE Yes Yes Yes Yes Yes Yes
Observations 119,043 119,043 119,043 95,943 94,847 95,953

Note:
This table presents the effect of HTF on the housing market using equation (3) for zip codes overlap-
ping with the NOAA inundation map. Column (2) is reproduced from Lee et al. (2024). Columns
(1)-(3) are based on ZHVI and ZORI while columns (4)-(6) are based on data from Realtor.com.
All outcome variables are in log scale. Standard errors are clustered at the county level. ∗p < 0.1;
∗∗p < 0.05; ∗∗∗p < 0.01.

using the identical specification and sample as column (1). The estimated coefficients is about three

times larger than column (1) at -0.23%, suggesting that current rental price change due to HTF is

not fully reflected in the housing price. Consequently, the price-rent ratio in column (3) increases by

0.14% for each additional day with HTF in the past 12 months.

In columns (4)–(6), we examine the impact of HTF on transaction-related variables to test whether

the muted housing price responses reflect a lag in price adjustment relative to transaction volumes

(Keys and Mulder 2020). While our data do not include sales volume, we use the number of new and

active listings and days on the market, which measure housing inventory and market liquidity, respec-

tively (Gupta et al. 2022). In column (4), we find that HTF exposure does not increase the number

of active listings (if anything, it reduces the number, which implies a hotter market). While a reduc-

tion in active listings could be driven by fewer new listings—potentially indicating a slower market

and lower transaction volumes—column (5) rules out that possibility. Similarly, column (6) shows

no meaningful impact on the median days on market. Taken together, these results suggest that the

muted price response is unlikely to be driven by a meaningful reduction in transaction volume or

housing supply.

In Figure 4.1, we estimate the impact of recent HTF exposure using a more flexible specification

that allows for potential non-linear effects. To do so, we first residualize the number of HTF days
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Figure 4.1: The Impact of HTF on Housing Prices and Rental Rates. These plots show the relationship be-
tween the number of HTF days in the past 12 months and (a) log housing prices and (b) log rental rates. Each
figure overlays a binned scatter plot with a fitted linear regression line from Table 4.1 columns (1) and (2). All
variables are residualized with respect to zip code, month, and county-by-year fixed effects.

in the past 12 months, log prices, and log rents with respect to zip code, month, and county-by-year

fixed effects. We then generate binscatter plots for (a) housing prices–HTF and (b) rents–HTF. The

estimated points indicate that a linear approximation provides a good fit: when overlaid with the

regression lines from Table 4.1 columns (1) and (2), the scatter plots closely align with the fitted

lines, suggesting that our results in Table 4.1 are unlikely to be an artifact of linear parameterization

in equation (3).

In Table 4.2, we conduct a series of robustness checks. In Panel A, we show results from alterna-

tive specifications. In column (1) we find that inclusion of time-varying zip code level characteristics

such as the number of days with moderate or major flood events in the past 12 months, the frac-

tion of population with college degree, the fraction of minority populations, median income, and

the fraction of rental units does not affect the impact of HTF on price-rent ratio from our preferred

specification. This is plausible given that variations in HTF occurrences are plausibly random. In

column (2), we control for more granular seasonality. Specifically, we include county by month fixed

effects, which can account for local seasonality in housing market or HTF occurrences, and find that

the impact on price-rent ratio remains identical.

Columns (3) and (4) test the robustness of our main results using alternative samples. Column (3)

estimates equation (3) using data from the 2000–14 period to investigate whether the muted price re-

sponse observed in our main sample (2015–21) reflects earlier capitalization of HTF risk. Specifically,
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Table 4.2: Effect of High-Tide Flooding on the Housing Market (Robustness Check)

(1) (2) (3) (4)

Panel A: Alt. Specifications
Dependent Var.: log (P/R) log (P/R) log(Price) log (P/R)

HTF Days (Past 12 Months) 0.0014*** 0.0014*** -0.0008** 0.0015***
(0.0003) (0.0003) (0.0002) (0.0003)

Sample Main Main 2000-14 Northeast
Controls Yes No No No
Zip Code FE Yes Yes Yes Yes
Month FE Yes No Yes Yes
Year-County FE Yes Yes Yes Yes
Month FE-County FE No Yes No No
Observations 119,043 119,043 246,777 75,255

Panel B: Alt. Information Sources
Dependent Var.: log(Price) log (P/R) log(Price) log (P/R)

HTF Days (Past 12 Months) -0.0015*** 0.0021**
(0.0004) (0.0008)

HTF Days (Past 13-24 Months) -0.0012* 0.0013
(0.0005) (0.0012)

HTF Days (Past 25-36 Months) -0.0005 0.0014
(0.0006) (0.0013)

HTF Days (Past 37-48 Months) -0.0009 0.0005
(0.0005) (0.0009)

HTF Days (Forecast) -0.0008 0.0020
(0.0015) (0.0023)

Sample Main Main 2018–21 2018–21
Controls No No No No
Zip Code FE Yes Yes Yes Yes
Month FE Yes Yes No No
Year-County FE Yes Yes Yes Yes
Observations 116,597 116,597 5,799 5,799

Note:
This table presents the effect of HTF on the housing market using alternative
specifications (Panel A) and information sources (Panel B). In Panel A, we (1)
controls for time-varying zip code level characteristics; (2) include more granular
County by Month fixed effects; (3) estimate the impact of HTF on housing prices
over 2000–14; and (4) repeat Table 4.1 column (1) using zip codes that are in
the 11 Northeast states. In Panel B, we allow belief formation based on longer
past (columns (1)-(2)) and future forecasts (columns (3)-(4)). Standard errors are
clustered at the county level. ∗p < 0.1; ∗∗p < 0.05; ∗∗∗p < 0.01.
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prior studies have highlighted the 2013 release of the IPCC climate assessment report as a pivotal

moment in shaping public expectations about sea level rise, which is a critical driver of HTF (Bern-

stein et al. 2019). If housing markets had already internalized these risks before our study period

(2015–21), we would expect a stronger price response during 2000–14. However, we find that the esti-

mated impact of HTF on housing prices during this period is nearly identical, at -0.08%, effectively

ruling out this explanation. Note, because ZORI data starts in 2015, we cannot estimate the impact

on the price-rent ratio. Column (4) further confirms the robustness of our results by restricting the

analysis to the 11 Northeast states, which have a denser network of tide gauge stations and therefore

have greater spatial precisions in HTF measurements.14 The similarity in point estimates suggests

that our main findings are not driven by potential measurement error in HTF exposure.

In Panel B, we assess the robustness of our results to alternative measures of the information

sources. In columns (1) and (2), we allow individuals to form expectations based on both recent

and more distant past experience by including three lags of HTF exposure. Column (1) indicates

that the impact of HTF days in the past 12 months on housing prices is slightly larger than in our

baseline specification, but, as shown in column (2), the impact on the price-rent ratio is even more

pronounced.

Estimates in column (1) also indicates that even if homebuyers form beliefs based on a longer his-

tory (e.g., 48 months) than renters (e.g., 12 months), the impact of HTF days in the past 12 months

is still larger for rents, which indicates that a smaller impact on prices than rents is unlikely to be

driven by systematic differences between homebuyers and renters in how they form expectations

about future HTF risk.

In columns (3) and (4), we test an alternative belief formation practice in which homebuyers base

their expectations based on scientific forecasts rather than historical HTF exposure. For this, we use

NOAA’s HTF annual outlook data, available for the years 2018–21.15 To match this data’s annual

frequency, we aggregate housing prices accordingly and regress them on the forecasted number of

HTF days. Although the coefficient estimate is imprecise due to the limited sample size, the point

estimate for housing prices in column (3) is nearly identical to that in our main specification, while

the impact on the price-to-rent ratio in column (4) is slightly larger. Taken together, these results
14These 11 states are CT, DC, DE, MA, MD, ME, NH, NJ, NY, RI, and VA.
15These reports were retrieved from https://tidesandcurrents.noaa.gov/pub.html#htf (accessed Dec 23, 2024).
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indicate that our main findings are robust to alternative representations of the HTF information set,

including both extended historical exposure and forward-looking forecasts.

5 Discussion

5.1 Mechanism

Section 2 highlights two key points: (1) the impact of information shock can be larger on rents than

housing prices when the market holds optimistic beliefs about future rental income, and (2) such

optimism may reflect expectations that HTF frequency will revert to a more typical baseline over

time, or that future adaptation efforts will effectively lessen its impact. In Table 5.1, we empirically

test these potential mechanisms. To focus on the relative impact on rents vs. prices, we use log of

price-rent ratio as outcome variables.

We begin by testing whether a mean-reverting belief is the primary driver of market responses.

This type of belief formation is more likely to arise when past events have lower information value

(i.e., lower serial correlation). Appendix Figure A.2(c) shows that the year-to-year serial correlation

in HTF occurrences varies substantially across gauge stations. Since higher serial correlation implies

greater informational value of past events (and lower correlation implies less), we divide the sample

into above- and below-median serial correlation groups (in absolute value) and re-estimate equation

(3) separately for each.

If this was the main driver of optimism, we would expect a larger coefficient for the low-serial cor-

relation group, where individuals are less likely to revise beliefs in response to recent HTF. However,

columns (1) and (2) show that the effect of recent HTF exposure on the price–rent ratio is similar

across both groups, providing little support for this mechanism.

Next, we examine whether expectations on future adaptation is the main driver. To proxy for

adaptation expectations, we use the share of people who believe that the President should do more

to address climate change. This measure is particularly relevant in our context, because, as discussed

earlier, effective adaptation to HTF is anticipated to originate largely from governmental action

(IPCC 2022). While this variable reflects normative preferences (“should”) rather than predictive

expectations (“will”), it still serves as a useful proxy because to the extent that elected officials act

as delegates of their constituents, public support for climate action is likely to translate into future
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Table 5.1: Testing Mechanisms

(1) (2) (3) (4) (5) (6)

Dependent Var.: log (P/R) log (P/R) log (P/R) log (P/R) log (P/R) log (P/R)

HTF Days (Past 12 Months) 0.0014*** 0.0014*** 0.0011*** 0.0019*** 0.0012*** 0.0017***
(0.0004) (0.0003) (0.0002) (0.0006) (0.0004) (0.0004)

Sample Low
Serial

High
Serial

Low
Policy

High
Policy

Low
Adapt

High
Adapt

Zip Code FE Yes Yes Yes Yes Yes Yes
Year-County FE Yes Yes Yes Yes Yes Yes
Month FE Yes Yes Yes Yes Yes Yes
Observations 60,921 58,122 61,206 57,837 60,985 58,058

Note:
This table presents β from equation (3) across different subsamples. Columns (1) and (2) split the
sample into below- and above-median HTF serial correlation. Columns (3)–(6) use two alternative
proxies to separate areas by below- and above-median expectations of future adaptation. Measures of
local climate beliefs are drawn from the Yale Climate Opinion Survey. Standard errors are clustered
at the county level. ∗p < 0.1; ∗∗p < 0.05; ∗∗∗p < 0.01.

adaptation efforts (Butler 2011). Table 5.1 columns (3) and (4) show that, indeed, the impact of re-

cent HTF exposure has much larger impact on the price-rent ratio in places with higher expectation

for government intervention.16

In columns (5) and (6), we test the future adaptation channel using an alternative proxy: beliefs

about climate change impact that are not associated with emotional concern, which likely reflect

individuals’ anticipation of effective adaptation measures. For this, we leverage two questions from

the Yale Climate Opinion Survey: the share of respondents who believe that global warming will

start to harm people in the US within the next 10 years (the “Timing” variable) and the share who

report being worried about climate change (the “Worried” variable). We regress the Timing variable

on the Worried variable and use the residual from this regression as a proxy for confidence in future

adaptation.17 Importantly, because the Timing variable specifically captures beliefs about climate

change affecting lives within the next 10 years, we can rule out the possibility that individuals who

believe in climate change but are not worried because they perceive it as a too distant threat. This

allows us to more confidently interpret a lack of concern—despite expectations of near-term harm—
16The Yale survey asks similar questions about other levels of government, including state, local, and Congress. We

find that the results are highly consistent regardless of which level-specific variable is used.
17To run this regression, we first aggregate the county-year-level data to the county level by averaging values across

years.
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as indicative of belief in effective adaptation. Similar to columns (3) and (4), we find that a group

with stronger opinions on adaptation proxies exhibit higher price-rent ratio increase due to the recent

HTF exposure.

5.2 Chronic vs. Permanent Inudation

Our central findings indicate that the risk of HTF has larger impacts on rents than housing prices.

This contrasts with earlier studies that have documented substantial price discounts (but typically

no effects on rents) for properties exposed to the risk of permanent inundation by the end of the

century (Bernstein et al. 2019, Baldauf et al. 2020, Giglio et al. 2021). Such a disconnect implies

that the market treats HTF and permanent inundation as unrelated phenomena. This is particularly

surprising given that HTF—essentially chronic inundation—and permanent inundation are driven

by fundamentally similar physical processes. As detailed in Section 3.1, the two distinct inundation

mapping products are developed using identical modeling approaches (NOAA 2017, n.d.).18

Such a disconnect may stem from at least two different sources. First, individuals tend to overlook

gradual environmental changes—a phenomenon often referred to as the “boiling frog” effect—and

instead focus on abrupt, binary status shifts (Liu et al. 2025). Sea level rise is inherently a gradual

process, often manifesting first as an increasing number of intermittent flooding events before culmi-

nating in permanent inundation. However, as people become acclimated to these changing conditions,

they may normalize the risk and consequently underreact, discounting the significance of what is, in

effect, a clear early warning signal. In contrast, the risk of permanent inundation may still provoke

behavioral responses due to its greater perceived salience.

Another possibility is that communication around sea level rise has failed to convey the underlying

physical connectivity. For instance, NOAA’s inundation maps for HTF and permanent inundation

are presented as distinct products, and unless one closely reviews the technical documentation, it is

difficult to recognize their methodological overlap. Similarly, IPCC reports, particularly earlier assess-

ments, have emphasized long-term projections with a particular attention to permanent inundation

(IPCC 2007, IPCC 2014), which may have inadvertently downplayed the immediacy and progressive

nature of sea level-related impacts.
18See Section 3.1 for more details.
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6 Conclusion

Driven by climate change, sea levels are rising rapidly, and many coastal communities are already

experiencing serious disruptions to daily life and economic activity due to HTF. Alarmingly, HTF

exposure is projected to increase exponentially over the next two decades, posing significant threats

to the livability of coastal areas. Yet despite its potentially severe consequences, little is known about

how HTF affects coastal housing markets.

Leveraging plausibly exogenous variations in HTF occurrences as an information shock, we find

that one additional day of HTF in the past 12 months reduces housing prices and rental rates by

0.09% and 0.23%, respectively. A simple asset pricing framework suggests that the smaller decline in

housing prices—relative to rents—reflects market expectations of a future rebound in rental income.

We further show that this pattern is particularly pronounced in areas with stronger expectations

of government-led adaptation. These findings underscore the potential risk of policy-induced moral

hazard.
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A Additional Tables and Figures

Figure A.1: Inundation Map (Atlantic Region)

Back to Section 3.1.
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Figure A.2: HTF Serial Correlation. These figures show the correlation between HTF frequency in year t and
year t-1 using (a) binned scatterplot and (b) residualized binned scatter plot where year and gauge dummies
are used for residualization. Panel (c) shows the distribution of gauge-specific serial correlation.

Back to Section 3.1.

26



25°N

30°N

35°N

40°N

45°N

50°N

120°W 110°W 100°W  90°W  80°W  70°W

Figure A.3: Location of NOAA Gauge Stations. This figure depicts 84 NOAA gauge stations within the
contiguous US that has flood thresholds from Sweet et al. (2018).

Back to Section 3.2.
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Figure A.4: Impulse Response Function Estimates. These figures plot βk estimates from equation (2) a
month-specific HTF days and (a) log of housing prices and (b) rents.

Back to Section 4.
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