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Abstract

While a theoretically consistent measure of flood costs is welfare loss, existing estimates are primarily
based on asset losses. This paper leverages high tide flooding (HTF)—highly disruptive yet rarely
destructive small-scale coastal floods—to estimate the economic cost of floods. We find that on HTF
days, visits to places decrease by 5%. Further, each additional day of HTF in the past year reduces
rents by 0.24%, which we interpret, based on the hedonic model, as the marginal willingness-to-pay to
avoid disruptions from HTF. Using this parameter, we estimate a lower-bound annual economic cost of
Presidential Disaster Declaration floods at $4 billion.
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1 Introduction

During the tidal floods, which can happen several days each month, “you can’t have parties, you can’t

have get-togethers, and you can’t have friends over,” says Dunker, whose street in Hamilton Beach

has been repeatedly cut off by flood waters since she moved in 23 years ago. “One year, it was flooded

from Thanksgiving to Christmas. We didn’t get a holiday that year. That’s how it is. You’ve got to

live with it.” (Curbed New York, Oct 12, 2017)

Economic theory posits that the true cost of floods is the utility loss they create, which includes

not only asset losses, such as damaged properties, but also a wide range of additional costs arising

from disruptions to economic activities and daily life (these additional costs are referred to in this

paper as “economic costs”). However, widely referenced cost estimates such as National Oceanic and

Atmospheric Administration (NOAA)’s “Billion-Dollar Weather and Climate Disasters” are primarily

based on asset losses due to measurement challenges (Smith and Katz 2013).1 This practice, which

may substantially underestimate the true cost, is not merely a theoretical concern: the federal gov-

ernment has emphasized developing estimates for currently non-monetized costs of natural disasters

as a critical step toward more robust regulatory analyses in the face of climate change (National

Science and Technology Council 2023).

To address this gap, we provide one of the first estimates of the economic cost of floods by lever-

aging high tide flooding (HTF), a highly disruptive yet rarely destructive small-scale coastal flood

caused by oceanic dynamics.2 Because HTF events can be viewed as random draws from an under-

lying distribution—much like fluctuations in extreme temperatures—they offer plausibly exogenous

variation and strong identification properties (Dell et al. 2014). Our analysis begins by examining

the impact of HTF on mobility, offering “first-stage” evidence of its disruptive effects. Next, we es-

timate HTF’s effect on rental rates. Building on the hedonic model, we interpret this coefficient as

the willingness-to-pay (WTP) to avoid HTF, or a lower-bound economic cost of floods. Focusing on

HTF is essential for this interpretation, as it avoids the bundled treatment problem of larger floods,
1There are at least two additional approaches for disaster cost estimation. The first approach aims to identify the

relationship between disaster and macroeconomic outcomes. (Nordhaus 2010, Strobl 2011, Cavallo et al. 2013, Hsiang
and Jina 2014, Desmet et al. 2021). The second approach focuses on estimating a specific dimension of economic costs
(e.g., labor market outcomes) (Gallagher and Hartley 2017, Deryugina et al. 2018). This paper departs from these
studies by estimating a micro-founded yet comprehensive economic cost of floods.

2HTF is often referred to as “nuisance” or “sunny day” flooding as well.
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which incur both asset losses and economic costs.3 Finally, using this parameter, we estimate a lower-

bound economic cost of Presidential Disaster Declarations (PDD) floods.

For empirical exercises, we construct historical HTF occurrence data by comparing daily water

level records with flood thresholds for each of the 84 NOAA gauge stations across coastal states in

the contiguous US. We link this with zip code level monthly rental rates (2015–21) and daily visits

data (2018–21) from Zillow and Safegraph. To determine the area inundated by the HTF (i.e., the

spatial extent of the HTF), we use the HTF inundation map from NOAA.

Our analyses produce three main findings. First, using the distributed lag model, we find that

on the day of HTF, the average number of visits drops by 5% in inundated zip codes. In contrast,

the number of visits immediately before HTF is strikingly similar to the rest of the days, consistent

with the assumption that HTF occurrences are plausibly random. Moreover, we show that these

disruptive effects often spill over into adjacent—but not directly inundated—areas, particularly in

cities with less resilient road networks. By investigating the impact by destination categories, we

show that HTF disrupts access to a wide range of places including essential infrastructures, urban

amenities, and workplaces. This suggests that the cost of impaired mobility from floods extends far

beyond a nuisance, leading to losses in health, learning, leisure, productivity, and income.

Turning to rental rates, we first posit that individuals form beliefs about HTF likelihood during

the rental period based on recent exposure, consistent with prior evidence that individuals use past

experience with similar hazards to update beliefs about future risks (Davis 2004, Bin and Landry

2013, Deryugina 2013, Gallagher 2014, Hong et al. 2019, Choi et al. 2020). Then, by exploiting

year-to-year variations in HTF frequency, we find that having one additional day of HTF in the past

12 months reduces rental prices by 0.24% or $48. Notably, HTF exposures have no effect on flood

insurance claims, suggesting that the reduction in rental rates arises from HTF’s negative impact on

the property’s expected use value rather than physical damage.

Building on the hedonic model, we interpret $48 as MWTP to avoid disruptions caused by HTF,

or a lower bound daily economic cost from floods. Importantly, we do not use housing prices as an

outcome variable because, unlike rental rates, which reflect individuals’ beliefs about a property’s
3In addition to making it difficult to separate economic costs from asset losses, large floods can also complicate

price signals, a key input to hedonic regressions. For instance, a housing supply shortage or improvements in housing
quality from post-flood rebuilding efforts may drive up rental rates, obscuring the true economic cost of floods.
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use value, housing prices capture both beliefs about use value and resale prices.4 Further, consistent

with the spillover effects documented in the mobility analysis, rental rates in uninundated coastal zip

codes decline only for those in cities with less resilient road networks, suggesting that impaired mobil-

ity is a key mechanism driving rent adjustments. Our findings are robust to alternative measures for

beliefs such as HTF exposures from longer historical periods (e.g., 24 months) or scientific forecasts

on the future number of HTF days.

Using the estimated parameter, we calculate the economic cost of large floods, using the Presiden-

tial Disaster Declaration (PDD) floods as examples. We take $48 and multiply it by the number of

households living in zip codes exposed to PDD floods and by the duration of each event. The result-

ing economic cost is as large as $4 billion per year over the 2018–21 period, which is comparable to

the $5 billion in flood insurance claims and federal disaster relief provided for the same set of PDD

floods.5 Although $4 billion is already substantial, we believe this number is likely to be a lower

bound because (1) disruptions from large floods are much more substantial than those from HTF

and (2) larger floods oftentimes destroy assets, which are important utility shifters. Our findings

suggest that ignoring the economic costs can substantially underestimate the true cost of floods.

Related literature. This paper contributes to four distinct strands of literature. First, it comple-

ments earlier studies estimating the cost of natural disasters. These studies typically focus on (1)

damage to physical assets (Smith and Katz 2013, Wing et al. 2022), (2) specific dimensions of eco-

nomic costs such as labor market impacts (Deryugina et al. 2018) and financial distress (Gallagher

and Hartley 2017), or (3) rely on macroeconomic outcomes (Nordhaus 2010, Strobl 2011, Cavallo et

al. 2013, Hsiang and Jina 2014, Desmet et al. 2021) for cost estimation. This paper provides a new

estimate of the currently non-monetized economic costs of floods by integrating an innovative identifi-

cation strategy with the hedonic framework. The findings suggest that ignoring these economic costs

can lead to a significant underestimation of the true cost of floods, potentially compromising the

accuracy of cost-benefit analyses of flood policies (National Science and Technology Council 2023).

Moreover, our estimates provide valuable insights into the economic costs of other natural disasters,

such as wildfires and earthquakes, which also trigger defensive behaviors and income losses (National
4In Lee and Zheng (2025a), we find that the impact of HTF on rental and housing prices are significantly different.
5These estimates suggests that the economic cost can be nearly half of the total costs, which is consistent with

previous studies (Hallegatte 2008, Koks et al. 2015, Benetton et al. 2022).
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Research Council 1999, Jones et al. 2016, Borgschulte et al. 2022).

Second, this paper contributes to the voluminous hedonic literature on flood risk (Hallstrom and

Smith 2005, Bin and Landry 2013, Bosker et al. 2019, Gibson and Mullins 2020, Hino and Burke

2021). Previous studies often estimate individuals’ WTP to avoid catastrophic flood risks, comparing

these estimates to benchmarks such as flood insurance premiums or objective risk probabilities to

assess market efficiency or consumer rationality. A key assumption underlying these analyses is that

asset losses are the sole driver of housing price adjustments. We depart from these papers by (1)

focusing on an alternative type of flood risk, which allows us to target a different parameter, and (2)

highlighting economic costs as a novel mechanism behind housing market adjustments.

Third, despite scientific findings that HTF will evolve very soon from an occasional nuisance to

a chronic problem (50+ days with HTF per year) for many coastal cities (Thompson et al. 2021),

a large literature on flood predominantly focus on catastrophic decadal- or centennial-scale events

(e.g., Ouazad and Kahn (2022); Deryugina (2017); Gallagher (2014)). This paper expands a small

and nascent literature on HTFs (Hino et al. 2019, Hauer et al. 2021, Benetton et al. 2022, Hauer et

al. 2023, Mueller et al. 2024, Lee and Zheng 2025a) by providing the first national-scale empirical

evidence on their mobility and housing market impacts.

Lastly, we build on recent studies that have utilized highly frequent and geographically detailed

mobile phone data to measure spatial patterns such as consumption and recreational demand

(Miyauchi et al. 2021, Knittel et al. 2023), economic activities (Atkin et al. 2022, Gupta et al. 2022b,

Li et al. 2023, Kreindler and Miyauchi 2023), and social interactions (Athey et al. 2021, Couture

et al. 2022). Our analysis reveals that mobile phone data is valuable in natural disaster settings as

well, allowing researchers to precisely identify affected areas and infer the source of utility losses from

floods with unprecedented granularity in both space and time.

This paper proceeds as follows. Section 2 lays out a framework that conceptualizes the economic

cost and guides empirical analysis. Section 3 provides background on the HTF, details the data

sources, and provides summary statistics. Section 4 analyzes the impact of HTF occurrence on mobil-

ity, and Section 5 studies the impact of HTF on rental rates. Section 6 estimates the economic cost

of PDD floods. Section 7 concludes.
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2 Conceptual Framework

We introduce a simple hedonic model that examines the trade-off between housing prices and risks

to define economic costs, and to guide our empirical analysis (Gayer et al. 2000, Davis 2004, Viscusi

and Gayer 2005, Bosker et al. 2019). Individuals maximize expected utility over two states of the

world “dry (D)” and “flood (F)”. Utility in each state j ∈ {D, F} are U = Uj(z, x) where z is a vector

of housing characteristics and x is a numeraire. Because floods incur serious disruptions in daily

life (e.g., impaired mobility), UD > UF for all values of (z, x).6 Individuals rent a house for a rental

period at a total cost of r, which is a function of z and p, the subjective probability of flood during

a rental period. Then, each individual’s bid function consists of (r, p) pairs that satisfy equation (1)

where y is income. In a competitive market, rents reflect an individual’s WTP for a house.

V = pUF (z, x) + (1 − p)UD(z, x) s.t. y = x + r(z, p) (1)

The first order condition in equation (2) implies that the gradient of the hedonic price sched-

ule with respect to subjective flood risk (∂r
∂p) is equal to the monetized utility reduction due to a

marginal increase in the frequency of HTF ( UF (x,z)−UD(x,z)
p∂UF /∂x+(1−p)∂UD/∂x), which we refer to as the “economic

cost” of floods.7 Put differently, our definition reflects the additional amount of money individuals

would require to restore the initial level of utility following a marginal increase in p. Importantly,

equation (2) implies that the economic cost can be empirically estimated as long as we can measure

p.

∂r

∂p
= UF (x, z) − UD(x, z)

p∂UF /∂x + (1 − p)∂UD/∂x
(2)

Take theory to data. Equation (2) provides guidance for our empirical exercise. First, given that

HTF primarily impairs road conditions, which critically determines access to various destinations

people value, the impact of HTF on the number of trips can be a direct test if UD > UF is true.

Second, equation (2) suggests that our empirical exercise requires data on the belief on the prob-
6For instance, utility from tasty food (an example of x) diminishes if gatherings are canceled, and the value of

proximity to work (an example of z) diminishes when access to the workplace is restricted, all due to flooded roads.
7Because y is exogenous, equation (1) abstracts away from an income or leisure shock channels. For instance,

limited access to the workplace or lower foot traffic may reduce income for business owners. Similarly, increased com-
muting time could reduce leisure. By endogenizing time choice, the model can more directly incorporate these channels.
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ability of floods during the rent period (i.e., belief about the future). To proceed, we assume that

individuals form their subjective probability of HTF based on recent exposure, consistent with prior

evidence that individuals use past experience with similar hazards to update beliefs about future

risks (Davis 2004, Bin and Landry 2013, Deryugina 2013, Gallagher 2014, Hong et al. 2019, Choi

et al. 2020).8 While we remain agnostic about the theoretical underpinnings of this belief forma-

tion process, earlier studies suggest it is consistent with both behavioral biases (e.g., myopia) or a

Bayesian learning model.

An important underlying assumption behind measuring p using recent HTF exposure is that re-

cent exposure influences r solely through p. This might not hold if HTF has lasting effects, such as

damage on properties or the degradation of local amenities. We alleviate these concerns using the

visits and flood insurance claims data in Section 5. Further, this assumption also suggests that using

housing prices as opposed to rental rates in hedonic regression can be problematic because HTF is

likely to affect housing prices not only through p but also through changing individuals’ expectations

on future housing prices. Indeed, Bishop et al. (2020) points out that rental rates may better reflect

current amenity flows than housing prices.

Finally, equation (1) highlights that the HTF based economic cost estimates underestimates the

economic cost of larger floods for two reasons. To highlight this, it is helpful to divide the vector of

z into two segments: z1, structural attributes of a property, such as the building’s physical condition,

and z2 that captures amenities like proximity to work. Now, as detailed in Section 5, HTF inflicts

minimal direct damage and thus rarely alters z1. In contrast, larger flood events will negatively im-

pact z1 (e.g., roof damage), which will reduce utility derived from given (z2, x). Note, even in the

absence of change in z1, the gap between UD and UF will be greater for larger floods because the

level of disruptions will be higher—for instance, more extensive road closures are likely to happen.

3 Background and Data

3.1 High Tide Flooding

HTF: measurement, trends, and impacts. The National Weather Service classifies flood events into

three categories based on their impacts: minor floods, which result in minimal or no property dam-
8In Section 5, we also show that our results are robust to alternative measurements.
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Figure 3.1: HTF Measurement and its Characteristics. Panel (a) illustrates HTF measurement using Gauge ID
8443970 in 2018. Panel (b) shows the annual number of HTFs during 2001–22 averaged over 84 NOAA gauge
stations in the contiguous US. Panel (c) shows the average monthly number of days with HTF during 2001–22.
Panels (d) and (e) show the distribution of moon illumination conditional on the HTF occurrence and the
probability of HTF conditional on new or full moon phase.

age but may pose public threats such as road inundation; moderate floods, which involve inundation

of structures and roads near the stream and may require evacuations or the relocation of property;

and major floods, characterized by extensive inundation of structures and roads, significant evacu-

ations, and widespread disruption (National Weather Service 2019). Building on these definitions,

NOAA defines HTF as an event in which the daily maximum water level falls between the minor and

moderate flood thresholds (Sweet 2018).

To illustrate, Figure 3.1(a) shows the 2018 time series of daily maximum water levels overlaid

with the three flood thresholds for a gauge station in Boston. As shown in the figure, July 15 is an

example of a day that experienced HTF. Notably, the highlighted grey area (March 4) illustrates

that water levels can exceed the minor flood threshold as either a precursor to or a residual effect of

a larger flood event. To avoid misclassifying such instances as HTF (i.e., avoid false positives), we

treat days within a ± 3-day window of a moderate or major flood event as non-HTF, even if water
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levels exceed the minor threshold. We also separately document dates when water levels exceed the

“moderate” or “major” thresholds to control for the impact of large floods in our robustness checks.

To measure HTF spatially—that is, to identify areas subject to high tide flooding—we use

NOAA’s HTF inundation map.9 This map delineates areas projected to be inundated when water

levels reach the site-specific “minor” threshold. The mapping uses a “bathtub” approach: any

location where land elevation is lower than the modeled water surface is classified as inundated.

The water surface is constructed by interpolating across tide gauge stations at the minor flood

threshold. The HTF inundation map is produced in essentially the same way as NOAA’s Sea Level

Rise inundation map products, which have been widely used in previous studies (Bernstein et al.

2019, Baldauf et al. 2020, Giglio et al. 2021).10

Appendix Figure A.1 illustrates the map for the Mid-Atlantic region. Notably, inundated areas

are not limited to locations directly adjacent to the ocean; in some cases, they extend far inland

via connected water systems—most notably tidal rivers, such as the Delaware and Hudson Rivers—

where tidal influences can propagate well upstream.11

While tidal movement is not a new phenomenon, HTF has become increasingly prevalent in recent

years due to sea level rise. Over the past two decades, the average number of days with HTF in the

contiguous U.S. has more than tripled (Figure 3.1 (b)), and this trend is expected to accelerate—

by mid-2040, many cities along the Atlantic Coast are projected to experience 50-100 days of HTF

annually (Thompson et al. 2021).

Existing anecdotal and scientific evidence suggests that HTF seriously disrupts daily life. For

instance, individuals experience loss of income (e.g., fewer patron visits to restaurants), loss of leisure

(e.g., giving up outdoor exercise at a park), loss of learning (e.g., children have difficulty getting to

school), health risks (e.g., delayed ambulance services) or other nuisances (Flechas and Staletovich

2015, Alvarez and Robles 2016, Kensinger 2017, Hino et al. 2019, Mazzei 2019, Hauer et al. 2021,

Bittle 2022, Choi-Schagrin and Sanders 2023, Hauer et al. 2023). Despite these disruptions, asset
9Accessed at https://coast.noaa.gov/slrdata/ on July 11, 2022. We use the “Flood Frequency” product. For further

details on mapping methodology, see https://coast.noaa.gov/data/digitalcoast/pdf/slr-high-tide-flooding.pdf.
10In both cases, inundation is determined by the condition Inundated = (Land Elevation ≤ Water Surface). For the

HTF map, the water surface is defined as mean higher high water (MHHW) plus the site-specific minor flood thresh-
old; for the Sea Level Rise (SLR) map, it is MHHW plus the selected SLR scenario (e.g., 2 ft). See NOAA (2017) for
further details.

11Consistent with this, local news outlets have reported instances of tidal flooding in cities such as Philadelphia and
Washington, D.C., even though they are not directly located on the open ocean (Muyskens 2023, Wood 2024).
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losses from HTF are minimal as we discuss in Section 5.

HTF as a research design. A critical assumption in our empirical strategy is that HTF

occurrence—both in terms of year-to-year frequency (Section 5) and precise timing (Section 4)—is

plausibly random. This assumption is supported by prior studies showing that HTF is driven by

multiple interrelated physical factors, including large-scale atmospheric and oceanic patterns such

as the El Niño–Southern Oscillation (ENSO), as well as localized conditions like wind speed, water

density, and tidal forces—all of which vary substantially over time and space (Sweet 2018). Plausibly

random variations in HTF occurrence are similar in spirit to numerous studies that leverage weather

shocks—such as temperature, precipitation, and windstorms—which are often modeled as random

spatial realizations and “offer strong identification properties” (Dell et al. 2014).

Consistent with this, Figure 3.1(b) shows that even after averaging out gauge-specific idiosyn-

crasies, HTF frequency varies substantially from year to year. Similarly, binned scatterplots in Ap-

pendix Figure A.2 demonstrate that, after conditioning on year and gauge fixed effects, HTF exhibits

only weak serial correlation across years—making the annual number of HTF events resemble a plau-

sibly random draw from an underlying distribution.

At the daily level, one might worry that HTF is correlated with other natural phenomena. For

example, Figure 3.1(a) suggests a relationship between water levels and the moon phase, and (c) re-

veals seasonality in HTF occurrences. However, while it is true that HTFs tend to cluster around full

or new moon phases (Panel (d)), these phases occur frequently throughout the year, so the probabil-

ity of an HTF on any given moon phase day remains low at 3% (Panel (e))—suggesting that moon

phase alone has limited predictive power for the precise timing of HTF events.12

3.2 Data Description

Coastal flood history. We construct a coastal flood history dataset by comparing NOAA’s verified

daily high water level data, retrieved using R package “rnoaa”, to gauge-specific flood thresholds.

Specifically, we use 84 gauge stations in the contiguous US that have flood thresholds from Sweet
12The conclusion holds even when restricting the sample to seasons and locations where tidal forcing is a stronger

predictor of HTF—fall and winter in Maine, Oregon, Washington, and San Diego, as identified by Sweet (2018). While
the share of days with HTF conditional on relevant moon phases in this subsample doubles relative to the full sample,
it remains low at 5%.
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Figure 3.2: Map of the Study Area. This figure depicts our main sample, which consists of 1,471 zip codes
that have non-missing rental rate records over 2015–21 and have an overlap with the NOAA inundation map.

(2018) (See Appendix Figure A.3 for gauge locations).13 As detailed in Section 3.1, we compare

the time series of daily water levels to gauge-specific flood thresholds and define a binary indicator

that equals 1 when the daily water level falls between the minor and moderate flood thresholds. To

connect zip codes with HTF events, we match each zip code to the nearest NOAA gauge station.

Mobility. We use mobile phone based visit counts records from SafeGraph Monthly Patterns data,

which documents the daily number of visits to a universe of places in the US from roughly 10% of

mobile devices in the US since 2018 (Parolin and Lee 2021).14 SafeGraph data has been used to

study recreational demand (Knittel et al. 2023), economic activity (Chen and Pope 2020, Atkin et al.

2022), and social interactions (Athey et al. 2021). It has also been shown to be demographically rep-

resentative at the national level (Chen and Pope 2020, Athey et al. 2021). We observe each place’s

exact location and the North American Industry Classification System (NAICS) code. We aggregate

place level visit records to create a balanced panel of visit counts at the day by zip code level for the

period of 2018-21.
13Ad hoc flood thresholds (i.e., minor, moderate, and major) for each gauge are typically set by local stakeholders,

such as NOAA Weather Forecast Offices and city emergency managers, based on their local knowledge of the relation-
ship between water levels and flood impacts. Sweet (2018) produces objective and nationally consistent gauge-specific
flood thresholds by applying statistical methods to these ad hoc thresholds.

14The types of places included in the data are places of business (e.g., retailers and hospitals), leisure (e.g., parks),
work (e.g., manufacturing plants), travel (e.g., transit stops), and community living spaces (e.g., apartments). Excluded
from the data are single-family houses, geographic features such as rivers, forests, and lakes, as well as transit routes
like roads. See https://docs.safegraph.com/docs/definition-of-a-place for more details (accessed on Aug 15, 2024). Also,
see Appendix Table A.1 for the relative frequency of destination categories in the data.
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Rental rates. We use Zillow Observed Rent Index (ZORI) for rental rates.15 Zillow constructs the

index by taking the weighted average of asking prices within the 35th to 65th percentile price range

on properties repeatedly listed for rent on Zillow.16 The index is dollar-denominated and we adjust

it for inflation using CPI. We use the zip code-level data from March 2015 to December 2021. 1,471

zip codes within the 22 coastal states in the contiguous US that have both rental information and an

overlap with the NOAA inundation map form the main analysis sample (see Figure 3.2).

ZORI has been widely used in prior research and shows a high correlation with other rental data

sources, including the Fair Market Rent Index from the Department of Housing and Urban Develop-

ment (HUD), median rent estimates from the American Community Survey (ACS), and the Rent of

Primary Residence component of the CPI from the Bureau of Labor Statistics (BLS) (Gupta et al.

2022a). We choose to use ZORI because these alternative data sources lack the spatial and temporal

granularity and coverage provided by ZORI.

Flood insurance claims. We use the National Flood Insurance Program (NFIP) claims data from

FEMA to investigate the impact of HTF on asset losses. The data have over 2 million individual

property level claims information including claims dollar amount from 1978–2021. We aggregate the

data to the zip code by month level and merge it with the coastal flood history data.

Summary statistics. Table 3.1 shows summary statistics for key variables used in our empirical

exercise from our primary sample in Figure 3.2. Panel A shows two key variables for the mobility

impact analysis. The average number of visits per day at the zip code level is 3,405.17 Also, the

mean daily probability of HTF occurrence (0.016, which is rounded up to 0.02), implies an average of

5.6 HTF days per year.

In Panel B, we present descriptive statistics for the rent and NFIP impact analyses. Several points

are worth noting. First, the median distance between a zip code centroid and a NOAA gauge station

is 13.6 miles, indicating that HTF exposure is well-measured for most zip codes. In Sections 4 and 5,
15Bishop et al. (2020) points out that using spatially aggregated data like ZORI may complicate estimating MWTP

using hedonic model because the derivative of the hedonic price function at the mean amenity level typically does not
match the mean of the derivatives. Nevertheless, because we operate under the assumption that the MWTP curve is
flat in line with existing literature, the two objects are identical (for more details, see Muehlenbachs et al. (2015)).

16To improve representativeness and better capture the broader rental market—not just units listed on
Zillow—observations that are overrepresented in the Zillow data relative to Census data are down-weighted,
while those that are underrepresented receive greater weight. For details, see https://www.zillow.com/research/
methodology-zori-repeat-rent-27092/ (accessed on Mar 2, 2023).

17A small number of observations (0.4%) has zero visits in a given day.
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Table 3.1: Summary Statistics for Key Variables

Variables Min. Max. Median Mean Std.Dev. N

Panel A: Mobility Impact Data
N of Daily Visits 0 57,735 2,606 3,405 2,992 2,149,131
If HTF 0 1 0 0.02 0.13 2,149,131

Panel B: Rent and NFIP Impact Data
Distance bewteen Zip Code and Gauge 0.3 122 13.6 20.9 21.8 119,507
Monthly Rental Rates 12.5 32,656 1,531 1,702 1,024 119,507
N HTFs (in Past 12 Months) 0 44 5 5.6 4.9 119,507
N Larger Floods (in Past 12 Months) 0 11 0 0.48 0.99 119,507
N NFIP Claims per Month 0 3,986 0 0.79 21.9 119,507

we show that our findings remain robust even when we restrict the sample to the Northeast, a region

with a denser network of gauge stations.

Second, the average monthly rent in the inundated zip codes is $1,702, which is over $400 higher

than the average rent in all other zip codes in the ZORI dataset.18 The difference in the rental rates

(at least partly) reflects the amenity value of being closer to the ocean. In addition to the large

spillover effects reported in Section 4, the level difference in rental rates suggests that zip codes out-

side of the inundation map might not be a good control group. Thus our empirical exercise leverages

variations in HTF occurrences among inundated zip codes.

Third, the number of days with HTF in the past 12 months is an order of magnitude larger than

that of moderate or major floods. Also, the difference between the mean (5.6) and median (5) num-

ber of days with HTF suggests that the average number of days with HTF is unlikely to be driven by

a few extreme values. Finally, the average community files 0.8 NFIP claims per month from floods of

all sizes. We use NFIP claims to investigate direct damage caused by HTF.

4 High Tide Flooding and Impaired Mobility

Estimation framework. Individuals undertake trips because such visits contribute positively to their

utility. When external factors, such as floods, prevent individuals from making these trips, their

utility diminishes. Building on this premise, this section examines whether UD(z, x) > UF (z, x) by
18There are 7,042 zip codes in the ZORI data and 1,471 of them have an overlap with the NOAA inundation map.
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analyzing the negative impact of HTF on mobility using a distributed lag model in equation (3).

log(V isitszdt) =
∑

j∈[−10,10],j ̸=−1
βjFzt,d−j + αzm + λdt + θct + ϵzdt (3)

Here V isitszdt denotes the number of visits to zip code z on date d in year t (e.g., Jan 1,

2019). Fzt,d−j are a set of indicators for 10 leads and 10 lags around the HTF event (i.e.,

j ∈ {−10, −9, . . . , 9, 10}) in zip code z. For leads larger than 10 (e.g., 11), we impose end-

point restrictions to 10. We include zip code by calendar month fixed effects, αzm, to control for

zip code specific seasonality. We also include county by year fixed effects, θct, to control for local

economic shocks that might affect visits. Finally, λdt denotes date-year fixed effects, which absorb

any shocks common to all zip codes on a given day including holidays, weekends, and lunar phases.

The coefficient of interest is βj , the effect of HTF on the number of visits for j relative to j =

−1. Since the occurrence of HTF on a particular day is governed by a plausibly random physical

processes, our preferred specification does not include additional control variables. Nevertheless,

we demonstrate that the results remain highly stable across a range of alternative specifications.

Throughout the analysis, standard errors are clustered at the county level. To prevent composition

changes, we use the identical set of zip codes as Section 5 for our main analysis.

Results. Figure 4.1 illustrates the impact of HTF on the number of visits.19 Panel (a) shows that

on the day of HTF, the number of visits decreases by 5% compared to the previous day. Importantly,

this 5% likely underestimates the true impact of HTF on mobility, as it reflects only the extensive

margin. That is, while some individuals may still complete their trips—albeit via longer routes or

slower travel with higher time costs—such adjustments are not captured in Panel (a).20

Panels (b)-(f) show that results in Panel (a) remain robust to a series of alternative specifications.

Specifically, we (b) control for zip code level concurrent weather conditions—precipitation, moderate

and major flood events; (c) control for 10-day leads and lags of precipitation as well as moderate and

major flood events; (d) drop observations with leads greater than 10 (instead of binning endpoints);
19Appendix Table A.2 and A.3 present coefficients appear in Figure 4.1 (a)-(f) and (g)-(i), respectively.
20There is limited data on the increased time effect due to HTF but a back-of-the-envelope calculation suggests that

each HTF is likely to cause a non-trivial increase in travel time. For instance, take the annual HTF-induced additional
driving time per vehicle (2 hours) from Jacobs et al. (2018) and divide it by the average number of HTF per year (5.6).
This means that on the day of HTF, it takes 21 more minutes to travel. In dollar terms, this amounts to $7.8 based on
the value of time estimate from Goldszmidt et al. (2020) ($22.15 in 2021 dollar).
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(a) Main Specification
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(b) Weather Controls
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(c) Precipitation Leads/Lags
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(d) No Endpoint Binning

−6

−4

−2

0

2

−10 −9 −8 −7 −6 −5 −4 −3 −2 −1 0 1 2 3 4 5 6 7 8 9 10
Days Since HTF

(%
) 

C
ha

ng
e 

in
 N

or
m

al
iz

ed
 V

is
its

(e) Areas with Denser Gauge Networks
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(f) Normalized Visits
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(g) Spillover
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(h) Spillover - Low Resiliency
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(i) Spillover - High Resiliency

Figure 4.1: The Effects of HTF on Daily Visits. These plots show the impact of HTF on the number of visits
in the 10 days before and after an event, estimated under various specifications. Panel (a) presents results
from our main specification. Panel (b) adds controls for daily weather conditions, while panel (c) further
includes leads and lags of precipitation. Panel (d) drops observations with leads larger than 10 (instead of
binning endpoints). Panel (e) restricts the sample to zip codes within the 10 Northeast states. Panel (f) uses
the normalized number of visits to account for variation in sampling rates. Panel (g) examines the impact on
adjacent but not inundated zip codes to detect spillover effects, while panels (h) and (i) explore how the size
of these spillover effects varies with the resiliency of local road networks. In all panels, the outcome variable is
the log of visits to all destinations. Grey areas show the 95% confidence interval.
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(e) restrict the analysis to 10 Northeast states with a denser network of gauge stations;21 and (f)

normalize the number of visits to account for varying sampling rates over time.22 The consistency

of estimates suggests that our identification is not sensitive to modeling choices, strengthening the

plausibility of causal interpretation.

Next, we examine potential spillover effects to assess whether Panel (a) overstates the true impact

on mobility by overlooking possible displacement to nearby non-inundated (dry) areas. Theoreti-

cally, the effect of HTF on visits to dry zip codes is ambiguous. In a resilient road network—one

that can absorb disturbances and maintain functionality (Wan et al. 2018)—trips between dry areas

are unlikely to be significantly disrupted. Moreover, some trips originally planned from dry areas

to inundated locations may be redirected to alternative dry destinations, which could result in an

increase in visits to nearby non-inundated zip codes. Conversely, in regions with less resilient road

networks, HTF-related disruptions may propagate across the broader transportation system, gener-

ating network-wide congestion. Under such conditions, increased travel times may not only limit the

scope for substitution but also reduce travel between dry areas.

To empirically test this, we estimate equation (3) on zip codes that do not overlap with the NOAA

inundation map but are (1) located within 30 miles of the coastline and (2) included in the Zillow

dataset. Panel (g) indicates that the number of trips to these zip codes declines by 3% (60% of ef-

fects in Panel (a)) on the day of HTF, suggesting that the scope of such substitution is limited, and

system-wide disruptions are prevalent. This finding aligns with transportation studies literature,

which shows that the closure of even a small share of road segments in US cities can trigger region-

wide travel delays (Kasmalkar et al. 2020, Hauer et al. 2021, Rajput et al. 2023).

To investigate why spillover effects in Panel (g) arise, Panels (h) and (i) test whether magnitude

of trip reduction varies with road network resiliency, consistent with earlier theoretical predictions.

Specifically, we classify metropolitan areas into relatively high- and low-resiliency groups based on

the rank-ordering of metropolitan areas by road network resilience from Ganin et al. (2017), and es-

timate equation (3) separately for each group.23 The results show that the spillover effect is notably
21These 10 states are CT, DC, DE, MA, MD, ME, NJ, NY, RI, and VA.
22Sampling rate (i.e., the number of devices included in the Safegraph data out of the total number of devices in the

US) has changed substantially over time (Kurmann and Lalé 2022). In Panel (f), we build on Kurmann and Lalé (2022)
and divide raw visit counts by the number of unique mobile devices for each zip code-month.

23Ganin et al. (2017) estimate the increase in travel delays resulting from a 5% random loss of road linkages across
40 US metropolitan areas. We use their resilience rankings to classify the 17 metros in our sample into high- and low-
resiliency groups. High-resiliency areas in our sample are Philadelphia (PA), Baltimore (MD), Richmond (VA), Miami
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smaller in areas with more resilient networks—about 50% of Panel (a)—compared to approximately

70% in low-resiliency areas. This variation in effect size not only lends support for the theoretical

prediction, but also reassures that the spillover effect is not driven by spurious correlations or unob-

served confounding.

In Appendix Figure A.4, we turn our attention to category specific effects to further investigate the

source of utility losses from flood events. Panels (a)-(e) reveal that HTF significantly disrupts access

to essential infrastructures—hospitals, school, childcare facilities, and various retail stores—as well as

workplaces.24 This suggests that the cost of HTF extends far beyond a minor nuisance, potentially

leading to losses in health, learning, access to essential goods like food, and productivity and income.

Further, Panels (f) and (g) show that HTF restricts access to key local amenities—accommodation

and food services, and recreation destinations—which causes loss of leisure. Importantly, the breadth

of affected categories implies that the potential for adaptation is limited even for most insulated

individuals in society. For instance, HTF is likely to negatively affect the productivity of remote

workers if, for instance, they have young children and access to daycare is restricted.

It is worth highlighting that the number of visits one or two days before HTF does not exceed

other days in any of the categories including the most flexible destinations like retail shops. Such a

lack of anticipatory behavior starkly contrasts with responses to extreme temperatures or natural

disasters, where households typically make preemptive trips in advance to fulfill their needs while

avoiding travel during the negative shock (Beatty et al. 2019, Li and Mostafavi 2022, Lee and Zheng

2025b). This difference is likely attributable to the fact that, while forecasts for natural disasters or

extreme temperatures are readily available, comparable predictive services for HTF remain scarce

(Dusek et al. 2022).25 Furthermore, the absence of a rebound effect post-HTF suggests that the HTF

reduces rather than postpones activities.

(FL), Los Angeles (CA), San Diego (CA), Sacramento (CA), and Seattle (WA). Low-resiliency areas are Boston (MA),
Providence (RI), Washington (DC), Orlando (FL), Jacksonville (FL), Tampa (FL), Houston (TX), San Francisco (CA),
and San Jose (CA).

24We analyze category specific effects using visits to the following NAICS codes: hospital (621), childcare facilities
(6244), retail stores (44 and 45), accommodation and food services (72), and recreation destinations (71). For work-
places, we combine 14 work-related places with two-digit NAICS codes 48, 52, 92, 51, 54-56, 23, 31-33, 42, 49, and 22.
For more details, see Appendix Table A.1 and https://www.naics.com/search.

25While tidal predictions have been available for decades, HTF forecasts have only emerged recently. NOAA’s
Monthly High Tide Flooding Outlook, introduced in August 2023 as part of the Bipartisan Infrastructure Law (NOAA
2023), marks the first formal effort to provide proactive HTF forecasts. The National Weather Service also issues
coastal flood advisories and warnings, but these are typically released shortly before an event, offering limited time for
individuals or communities to adjust their behavior in advance.
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In Panel (h), we examine the impact of HTF on visits to auto repair shops to assess potential

effects on physical assets. We find no evidence of an increase in repair activity following HTF events.

Instead, the cumulative 10-day effect on visits (
∑10

j=0 βj) is –4.1%, indicating that the net impact

remains negative despite a modest rebound in visits after the event.

5 Effect of High Tide Flooding on Rental Rates

Estimation framework. Results in Section 4 provide the “first-stage” evidence that HTF substantially

disrupts daily life, namely UD > UF . This section aims to quantify UD − UF , the economic cost of

floods. For this, we investigate the impact of HTF on rental rates using equation (4).

log(Yczmt) = βNzmt + αz + θct + θm + ϵczmt (4)

Here Yczmt is the average monthly rent for zip code z in county c in month m at year t. We in-

clude a rich set of fixed effects. Zip code fixed effects αz control for time-invariant zip code level char-

acteristics including amenity level (e.g., distance to the ocean). We also include year by county (θct)

and month (θm) fixed effects. θct accounts for county specific shocks in a given year, for instance,

local housing market shocks. θm accounts for seasonality. The key independent variable is Nzmt, the

number of days with HTF in the past 12 months for a zip code z at time mt, which proxies for p in

equation (2). Per equation (2), β represents the MWTP to avoid a marginal increase in HTF expo-

sure, which can also be interpreted as a lower bound economic cost of flooding per day. As detailed

in Section 3.1, our identification strategy relies on plausibly random year-to-year variation in local

HTF occurrences, which provides strong identification properties.

Results. Table 5.1 column (1) reports that one additional day of HTF in the past 12 months re-

duces rent by 0.24%. When evaluated at the annual mean rent, which corresponds to r equation (2),

this amounts to a $48 reduction.26 Importantly, equation (2) indicates that $48 is MWTP to avoid

exposure to HTF or a lower bound economic cost of flooding, which reflects a range of financial and

non-financial impacts of HTF as documented in Appendix Figure A.4.27 Given that the average num-
26r represents the total payment over the rental period. Since over 60% of lease terms are 12 months, a natural

empirical analog of r is 12 times the monthly rent (Houck 2022).
27The result in column (1) might be implausible if the majority of renters are not aware of HTF, potentially due

to being new residents in the area. However, the Survey of Income and Program Participation panel data, which has
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ber of days with HTF in the sample is 5.6, the estimated coefficient suggests a 1.3% or $269 decline

in annual rent per unit.28 Our estimated effect is smaller than Benetton et al. (2022), who finds that

rental prices in Venice increase by 6% (or 0.65% per day of tidal flooding) following the construction

of a sea wall, which protects properties from tidal flooding and improves the quality of life.

As discussed in Section 2, interpreting $48 as the economic cost of floods relies on the assumption

that HTF affects rental rates only through expectation. We provide two pieces of evidence in support

of this. First, in column (2), we estimate the impact of HTF on the number of flood insurance claims

to test whether the impact of HTF on rent is partly attributable to direct damage. Because a flood

insurance claim has to be made within 60 days of damage (FEMA 2016), we use the number of days

with HTF in the past two months as our key regressor. The result indicates that HTF rarely incurs

direct damage: one additional day of HTF in the past two months has no statistically significant

increase in the number of flood insurance claims. Moreover, even if HTF incurs minor damage, it is

unlikely to affect renters directly, as such risks are typically borne by landlords.

Second, in Appendix Figure A.5, we test whether HTF affects rental prices by degrading local

amenities—for example, through lasting impacts on parks or recreational areas. For this, we extend

the exercise from Section 4 using longer lags. Our results suggest that the number of visits to these

amenities returns to normal levels quickly after an HTF and remains stable over the subsequent 30

days. Drawing on insights from the recreational demand model, we interpret this as evidence that

HTFs do not inflict significant long-term damage on local amenities (Phaneuf and Smith 2005).

In columns (3)-(5), we use alternative measures for belief on the likelihood of HTF during rental

periods (p from equation (2)). Specifically, column (3) allows belief formation based on further past—

past 24 months as opposed to 12 months—and find that the result is very similar to column (1). In

column (4), we retain Nzmt in equation (4) but include three lags (the number of days with HTF in

the past 13-24, 25-36, and 37-48 months) as additional regressors. This specification allows beliefs to

be shaped not only by the most recent exposure but also by longer-term historical experience.29 The

finding suggests that results in column (1) could be a conservative estimate of an economic cost.

been frequently used to study the duration of residence (Mateyka and Marlay 2010), suggests that the median (mean)
duration of tenancy for renters in coastal states is 36 (64) months as of 2018, which implies that renters likely possess
or acquire local knowledge.

28The estimated effect may underestimate the true impact on rental prices if landlords offer non-monetary conces-
sions (e.g., renovating bathrooms or replacing appliances) instead of reducing rents.

29To make the model saturated, we drop about 1% of observations that had no HTF over the sample period.
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Table 5.1: Effect of High Tide Flooding on Rental Rates and Flood Insurance Claims

(1) (2) (3) (4) (5) (6) (7) (8)

Dependent Var.: log(Rent) Claim Ct log(Rent) log(Rent) log(Rent) log(Rent) log(Rent) log(Rent)

HTF Days (Past 12 Months) -0.0024*** -0.0036*** -0.0015*** 0.0002 -0.0025***
(0.0004) (0.0008) (0.0003) (0.0008) (0.0005)

HTF Days (Past 2 Months) 0.0891
(0.1106)

HTF Days (Past 24 Months) -0.0022***
(0.0005)

HTF Days (Past 13-24 Months) -0.0026**
(0.0012)

HTF Days (Past 25-36 Months) -0.0019
(0.0013)

HTF Days (Past 37-48 Months) -0.0014
(0.0010)

HTF Days (Forecast) -0.0030
(0.0029)

Sample Main Main Main Main 2018–21 No Inund
Low Resilient

No Inund
High Resilient Northeast

Zip Code Yes Yes Yes Yes Yes Yes Yes Yes
Month Yes Yes Yes Yes No Yes Yes Yes
Year-County Yes Yes Yes Yes Yes Yes Yes Yes

Observations 119,507 119,507 119,507 117,061 5,810 34,712 46,388 75,455

Note:
Column (1) present the impact of having one additional day of HTF in the past 12 months—a measure of renters’ belief on the
number of HTF during rental periods—on log of rental rates. Column (2) shows the impact of having one additional day of HTF in
the past 2 months (claims window) on the number of flood insurance claims. Columns (3)-(5) show results from alternative belief
measures. Columns (6) and (7) repeat column (1) using non-inundated coastal zip codes with low- and high- road network resiliency,
respectively. Column (8) repeat column (1) using zip codes that are in the 10 Northeast states. Standard errors are clustered at the
county level. ∗p < 0.1; ∗∗p < 0.05; ∗∗∗p < 0.01.
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In column (5), we assume individuals are sophisticated, forming expectations based on scien-

tific forecasts rather than relying on past events. For the source of these scientific forecasts, we use

NOAA’s HTF annual outlook data series, which is reported annually for 2018–21.30 Thus, we aggre-

gate the rent data to the same temporal resolution and regress it on the forecasted number of days

with HTF. The resulting coefficient is underpowered, but the point estimate is similar—albeit some-

what larger—to the rest of the columns at -0.3%. Collectively, these results suggest that the belief

measure in column (1) is robust to alternative assumptions about belief formation.

Mobility results in Figure 4.1 (g)–(i) suggest that even when a zip code is not directly inundated

by HTF, the utility of residing in that location can still decline due to spillover effects, particularly

in areas with less resilient road networks. In Columns (6) and (7), we test whether these mobility

spillovers translate into housing market outcomes by estimating the impact of HTF on rental rates

in metropolitan areas with high and low road network resiliency. The analysis focuses on zip codes

located within 30 miles of the coastline but outside the inundation map. We find that the negative

impact of HTF on rental rates appears only in zip codes within low-resiliency areas, suggesting that

impaired mobility is a key channel through which HTF events affect local housing markets.

Finally, in column (8), we test if potential errors in HTF measurement affect our results. For this,

we estimate equation (4) only for zip codes in the 10 Northeast states that have a denser network of

gauge stations, and report that the estimated effect is essentially identical to column (1).

We conduct two additional robustness checks: we repeat the same exercise as Table 5.1 with con-

trol variables (Appendix Table A.4) and with the county by month—as opposed to month—fixed

effects (Appendix Table A.5), which, for instance, allow for county specific seasonality in the hous-

ing market. The results are strikingly stable for rental rates. In contrast, the estimates for flood

insurance claims vary in direction across specifications and lack economic and statistical significance,

reinforcing the conclusion that HTF exposure has minimal impact on asset losses.

In Figure 5.1, we non-parametrically estimate the impact of HTF on rental rates. For this, we

create a saturated set of “dose” indicators that take 1 when the number of days with HTF in the

past 12 months for a zip code in a given year-month is in bin k where k ∈ {0, 1, 2, · · ·, 19, 20+ }.

Because we use k = 0 as the baseline category, the estimated coefficients for each bin indicate the

additional rental rate impact when a zip code experiences k days of HTF as opposed to 0.
30These reports are downloaded from https://tidesandcurrents.noaa.gov/pub.html#htf (accessed Dec 23, 2024).
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Figure 5.1: The Impact of HTF on Rental Rates by Frequency. This plot shows how the impact of HTF on
rental rates varies by the frequency of HTF incidents. For this, we regress HTF exposure bins (e.g., 2 indicates
that a zip code had 2 days of HTF exposure in the past 12 months) on the log of rent. Shaded area represents
the 95% confidence interval.

The estimated coefficients in Figure 5.1 show that rental rates nearly monotonically decrease as

exposure increases. For instance, while having 1 day with HTF reduces rental rates by 0.7%, having

10 days with HTF affects rental rates by over 3%. More generally, the curvature indicates that a

linear parameterization in Table 5.1 column (1) is a reasonable first-order approximation.

Further, estimates in Figure 5.1 can be used for additional robustness checks. Callaway et al.

(2024) shows that equation (4) may suffer selection bias in the presence of a heterogeneous treat-

ment effect. To explore to what extent this issue might bias our estimates, we follow Callaway et al.

(2024) and calculate the MWTP parameter using a frequency-weighted average of first-differenced

non-parametric estimates, namely
∑20

k=1(βk − βk−1)P (N = nk|N > 0) where βk is the estimated effect

for bin k and N is the number of days with HTF in the past 12 months. We find that this procedure

implies that MWTP to avoid one additional day of HTF is 0.0031 (s.e. = 0.0005) or 0.31%, which is

consistent with the results in Table 5.1 column (1).

6 Discussion

In this section, we calculate the economic cost of large floods using the Presidential Disaster Declara-

tion (PDD) floods as examples. As previously discussed, we interpret the 0.24% (or $48) reduction

22



in rent from Table 5.1, Column (1), as a daily, per-household lower bound estimate of the economic

cost of flooding, capturing impacts that extend beyond direct asset losses.31 With this caveat, we

multiply $48 by the number of households exposed to the PDD floods and by each event’s duration.

One potential approach to identify the number of households exposed to PDD is using readily

available location information (county) in FEMA’s PDD database.32 However, flood damage can be

highly localized and some parts of a county might not be affected by the event. Thus, we estimate

zip code specific mobility impact due to a PDD to identify the number of households affected by the

event. For this, we first list up zip codes that are located within the counties affected by each PDD.

Then, for each zip code, we estimate equation (5), which compares the number of visits for PDD

periods (PDDdt = 1 when a day has PDD or is within three lags) to the rest of days in the 2018–

21 period after controlling for daily precipitation, month, day of the week (e.g., Monday), and year

fixed effects. The coefficient of interest is βz, which represents zip code specific mobility impact due

to a PDD event. We cluster standard errors at the fortnightly level to account for potential serial

correlation in the error.

log(V isitsdt) = βzPDDdt + γXdt + αm + λw + θt + ϵdt (5)

Figure 6.1 (a) illustrates the value of this approach.33 Here, we classify zip codes into three cate-

gories: those with statistically significant (at the 90% confidence level) negative impacts, statistically

significant but positive impacts, and statistically insignificant impacts. Importantly, to prevent over-

estimation, we only treat households in the first group, which are 7 out of 47 zip codes in Figure

6.1 (a), as zip codes that are negatively affected by PDD. More generally, we find that 30% of zip

codes that are included in PDD counties over the 2018–21 period are negatively and statistically

significantly affected by PDD events. Given that zip codes in the other two categories could be still

negatively affected by PDD events, we believe this is a conservative estimate. Using the number of

households information from the American Community Survey, we find that for a typical year, 12.4

million households are residing in zip codes that are affected by PDD floods over this period.
31An implicit assumption behind this approach, which is widely used in the literature, is that the MWTP curve has

a flat slope (Muehlenbachs et al. 2015, Bishop et al. 2020). If we assume instead that the MWTP curve is vertical,
then it essentially means that we consider the duration of each flood event as one. If we assume a downward sloping
MWTP curve instead, the economic cost estimate will lie between the vertical and flat MWTP curve cases.

32Downloaded from https://www.fema.gov/openfema-data-page/disaster-declarations-summaries-v2 (Apr 29, 2023).
33The large blank in Figure 6.1 (a) is the Everglades and Francis S. Taylor Wildlife Management Area.
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Figure 6.1: The Mobility Impact of PDD Floods. Panel (a) illustrates zip code specific PDD flood impact on
the number of visits for Broward county, FL. Panel (b) shows the mobility impact over time for PDDs with
documented incident window of 7+ days.

For the duration of an event, we leverage the “incident window” in the PDD dataset after making

a few adjustments. Because the incident window, whose primary purpose is establishing the eligibil-

ity window for federal assistance (Lee et al. 2023), may not correspond to the actual physical flood

duration, we first cap the incident window at seven days to prevent overstating the duration. Fur-

ther, we compare the incident window to an empirical flood duration, which we estimate using the

mobility data similar to our exercise in Section 4. For this, we separately estimate equation (3) for

PDD events with documented “incident window” of 1–2, 3–4, 5–6, and 7+ days, and examine the

number of days with statistically significant negative mobility impacts. Figure 6.1 (b) illustrates the

impact of PDD floods with the documented duration of 7+ days. We find that the negative mobil-

ity impact lasts for over 10 days, which is longer than the documented incident window. Similarly,

in Appendix Figure A.6 we present results for all incident window categories, which show that the

incident window does not seem to overestimate the actual flood duration.

By multiplying $48 to the number of affected households and duration of each PDD, we find that

the annual economic cost of PDD over 2018–21 is at least $4 billion. We highlight that $4 billion is a

lower bound because (1) the economic costs of PDD floods are much larger than HTF as evidenced

by Figure 6.1 (b)—the impact of PDD on the number of trips is more than twice larger than that of

HTF—and (2) PDDs typically cause severe asset losses which further reduces the utility level.

To benchmark, we compare $4 billion to the sum of flood insurance claims and federal disaster
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relief funds attributed to these PDD floods, which amounts to $5 billion. Similar to our findings,

Benetton et al. (2022) shows that housing prices for ground-floor units—susceptible to both asset

losses and economic costs from floods—increase by 7% following the construction of a sea wall, while

prices for higher-floor units, which experience economic costs alone, rise by 4%. Hallegatte (2008)

and Koks et al. (2015) also find that indirect economic costs can be larger than direct losses.

While actual asset losses are likely higher than $5 billion due to limits on payouts—such as caps on

insurance coverage or disaster relief amounts—this comparison suggests that ignoring the economic

costs can substantially underestimate the true flood cost, which in turn can undermine the accuracy

of cost-benefit analyses of flood policies (National Science and Technology Council 2023).

7 Conclusion

While the theoretically consistent cost of floods is a welfare loss from the event, existing cost esti-

mates are predominantly based on asset losses due to measurement challenges. In this paper, we

leverage variations in HTF, a highly disruptive yet rarely destructive flood event, to estimate the

economic cost of floods that goes beyond the asset losses.

Using mobile phone based high-frequency trip data, we find direct evidence that HTF disrupts lo-

cal mobility. On the day of an event, the number of visits declines by 5% in inundated zip codes, and

these disruptive effects often spill over into adjacent—but not directly inundated—areas, particularly

in cities with less resilient road networks. Further, by disaggregating the impacts by destination type,

we show that HTF disrupts access to a broad range of locations, including essential infrastructure,

urban amenities, and workplaces. This suggests that the cost of inundation due to floods extends

far beyond a nuisance, potentially leading to losses in health, learning, leisure, access to essential

goods like food, and productivity and income. Then, using zip code level rental rates data, we show

that being exposed to one additional day of HTF in the past 12 months, which proxies for renters’

expectations about flooding during their lease period, reduces rents by 0.24% or $48 per day. Given

the disruptive nature of HTF, we interpret this as the economic cost of floods.

Using this parameter as a lower bound of economic cost from large floods, we show that annual

economic costs from PDD floods over the 2018–21 period is at least $4 billion. Our findings suggest

that ignoring costs beyond asset losses can substantially underestimate the true cost of floods. This
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parameter holds significant practical implications, particularly given the federal government’s efforts

to enhance cost-benefit analyses by incorporating currently non-monetized costs of natural disasters

(National Science and Technology Council 2023).
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A Additional Tables and Figures

Table A.1: Relative Frequency by NAICS Categories in the SafeGraph Patterns Data

Category NAICS Code Pct. of Visit Counts Pct. of Places

Accommodation and Food Services 72 25.68 23.54
Retail Trade 44 16.19 17.35
Arts, Entertainment, and Recreation 71 14.46 7.63
Real Estate Rental and Leasing 53 11.61 2.46
Retail Trade 45 9.72 5.99
Health Care and Social Assistance 62 6.84 14.68
Educational Services 61 5.82 3.38
Other Services (except Public Administration) 81 4.48 15.21
Transportation 48 1.49 0.63

Finance and Insurance 52 0.62 2.91
Public Administration 92 0.47 0.69
Information 51 0.38 0.75
Professional, Scientific, and Technical Services 54 0.37 1.22
Construction 23 0.35 0.82
Manufacturing 31 0.27 0.65
Wholesale Trade 42 0.25 0.55
Manufacturing 32 0.23 0.50
Manufacturing 33 0.21 0.29

Warehousing 49 0.21 0.30
Administrative and Support and Waste Services 56 0.16 0.27
Management of Companies and Enterprises 55 0.15 0.13
Utilities 22 0.04 0.06
Agriculture, Forestry, Fishing and Hunting 11 0.00 0.01
Mining 21 0.00 0.00

Note:
This table presents the relative frequency of places by NAICS industry codes in the SafeGraph Pat-
terns data.

Back to Section 3.2.
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Table A.2: Effect of High Tide Flooding on Mobility

(1) (2) (3) (4) (5) (6)

Lead 8 -0.0071** -0.0063** -0.0061** -0.0101*** -0.0101*** -0.0048**
(0.0028) (0.0027) (0.0028) (0.0030) (0.0038) (0.0021)

Lead 7 -0.0050* -0.0066*** -0.0066*** -0.0044 -0.0087** -0.0024
(0.0026) (0.0025) (0.0025) (0.0028) (0.0042) (0.0019)

Lead 6 -0.0006 0.0003 0.0003 -0.0018 -0.0115*** 0.0021
(0.0024) (0.0022) (0.0022) (0.0025) (0.0036) (0.0017)

Lead 5 0.0006 -0.0001 -0.0002 -0.0019 -0.0058* 0.0028*
(0.0020) (0.0019) (0.0018) (0.0024) (0.0032) (0.0016)

Lead 4 0.0017 0.0017 0.0015 -0.0005 0.0008 0.0036*
(0.0020) (0.0020) (0.0020) (0.0023) (0.0028) (0.0021)

Lead 3 0.0014 0.0002 -5.65e-6 0.0013 0.0005 0.0041**
(0.0017) (0.0017) (0.0017) (0.0023) (0.0029) (0.0021)

Lead 2 -0.0033 -0.0044* -0.0026 -0.0049* -0.0036 8.87e-5
(0.0024) (0.0025) (0.0025) (0.0027) (0.0043) (0.0018)

HTF -0.0522*** -0.0464*** -0.0472*** -0.0421*** -0.0318*** -0.0490***
(0.0033) (0.0033) (0.0033) (0.0030) (0.0052) (0.0028)

Lag 1 -0.0056 -0.0040 -0.0032 -0.0005 -0.0148*** -0.0025
(0.0035) (0.0035) (0.0035) (0.0035) (0.0049) (0.0024)

Lag 2 0.0038 0.0021 0.0027 0.0016 0.0010 0.0059***
(0.0024) (0.0024) (0.0024) (0.0028) (0.0037) (0.0019)

Lag 3 -0.0057** -0.0062** -0.0057** -0.0076*** -0.0043 -0.0035
(0.0025) (0.0025) (0.0025) (0.0029) (0.0030) (0.0027)

Lag 4 -0.0052*** -0.0053*** -0.0050** -0.0058** -0.0011 -0.0029
(0.0020) (0.0020) (0.0020) (0.0029) (0.0021) (0.0026)

Lag 5 -0.0060*** -0.0063*** -0.0059*** -0.0096*** -0.0126*** -0.0039*
(0.0022) (0.0022) (0.0022) (0.0029) (0.0034) (0.0021)

Lag 6 0.0017 0.0025 0.0024 0.0001 7.49e-5 0.0038***
(0.0018) (0.0018) (0.0019) (0.0022) (0.0034) (0.0014)

Lag 7 -0.0038 -0.0035 -0.0041 -0.0051* -0.0091* -0.0012
(0.0027) (0.0027) (0.0028) (0.0026) (0.0047) (0.0018)

Lag 8 0.0019 0.0016 0.0007 0.0030 -0.0030 0.0044**
(0.0023) (0.0023) (0.0023) (0.0022) (0.0039) (0.0020)

Model Main Weather Ctrl Rain Lead/Lag No Binning Northeast Normalized
Observations 2,096,685 2,096,685 2,095,310 412,167 727,024 2,096,685

Note:
This table corresponds to Figures 4.1 (a)-(f). For the interest of space, only 8 leads and lags are
presented. ∗p < 0.1; ∗∗p < 0.05; ∗∗∗p < 0.01.
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Table A.3: Effect of High Tide Flooding on Mobility (Not Inundated Zip Codes)

(1) (2) (3)

Lead 8 -0.0018 -0.0062 0.0034
(0.0025) (0.0040) (0.0041)

Lead 7 -0.0041 -0.0042 0.0007
(0.0026) (0.0028) (0.0051)

Lead 6 0.0054** 0.0021 0.0124***
(0.0027) (0.0039) (0.0037)

Lead 5 -0.0058** -0.0050* -0.0032
(0.0025) (0.0029) (0.0048)

Lead 4 -0.0029* 7.48e-5 -0.0041
(0.0017) (0.0032) (0.0030)

Lead 3 0.0015 0.0009 0.0076
(0.0024) (0.0032) (0.0050)

Lead 2 -0.0023 0.0037 -0.0048
(0.0023) (0.0028) (0.0038)

HTF -0.0330*** -0.0380*** -0.0285***
(0.0063) (0.0082) (0.0066)

Lag 1 0.0004 0.0011 5.93e-5
(0.0027) (0.0032) (0.0037)

Lag 2 0.0032 0.0027 0.0073**
(0.0023) (0.0042) (0.0031)

Lag 3 -0.0045 -0.0116*** 0.0089**
(0.0043) (0.0039) (0.0038)

Lag 4 0.0004 0.0019 0.0026
(0.0021) (0.0045) (0.0042)

Lag 5 -0.0079** -0.0094* -0.0022
(0.0037) (0.0050) (0.0037)

Lag 6 0.0026 0.0024 0.0074
(0.0025) (0.0037) (0.0052)

Lag 7 0.0028 -0.0016 0.0120**
(0.0035) (0.0038) (0.0053)

Lag 8 -0.0039 -0.0057 0.0041
(0.0035) (0.0046) (0.0032)

Sample No Inund No Inund
Low Resilience

No Inund
High Resilience

Observations 1,398,909 593,930 804,979

Note:
This table corresponds to Figures 4.1 (g)-(i). For the
interest of space, only 8 leads and lags are presented.
∗p < 0.1; ∗∗p < 0.05; ∗∗∗p < 0.01.
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Table A.4: Effect of High Tide Flooding on Rental Rates and Flood Insurance Claims (with Controls)

(1) (2) (3) (4) (5) (6) (7) (8)

Dependent Var.: log(Rent) Claim Ct log(Rent) log(Rent) log(Rent) log(Rent) log(Rent) log(Rent)

HTF Days (Past 12 Months) -0.0024*** -0.0036*** -0.0015*** 0.0002 -0.0024***
(0.0004) (0.0008) (0.0003) (0.0008) (0.0004)

HTF Days (Past 2 Months) -0.1599
(0.1378)

HTF Days (Past 24 Months) -0.0022***
(0.0005)

HTF Days (Past 13-24 Months) -0.0025**
(0.0012)

HTF Days (Past 25-36 Months) -0.0019
(0.0013)

HTF Days (Past 37-48 Months) -0.0014
(0.0010)

HTF Days (Forecast) -0.0029
(0.0027)

Sample Main Main Main Main 2018–21 No Inund
Low Resilient

No Inund
High Resilient Northeast

Zip Code Yes Yes Yes Yes Yes Yes Yes Yes
Month Yes Yes Yes Yes No Yes Yes Yes
Year-County Yes Yes Yes Yes Yes Yes Yes Yes

Observations 119,493 119,493 119,493 117,047 5,810 33,789 46,388 47,202

Note:
This table reproduces Table 5.1 by including zip code level control variables: monthly precipitation, the number of days with larger
floods in the past 12 months (past 2 months for column (2) and past 24 months for column (3)), median income, share of rental units,
share of population with college degree, and share of minority population. ∗p < 0.1; ∗∗p < 0.05; ∗∗∗p < 0.01.
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Table A.5: Effect of High Tide Flooding on Rental Rates and Flood Insurance Claims (Alt. FE)

(1) (2) (3) (4) (5) (6) (7)

Dependent Var.: log(Rent) Claim Ct log(Rent) log(Rent) log(Rent) log(Rent) log(Rent)

HTF Days (Past 12 Months) -0.0023*** -0.0036*** -0.0015*** 0.0002 -0.0025***
(0.0004) (0.0009) (0.0003) (0.0008) (0.0005)

HTF Days (Past 2 Months) 0.0294
(0.1015)

HTF Days (Past 24 Months) -0.0022***
(0.0006)

HTF Days (Past 13-24 Months) -0.0025*
(0.0014)

HTF Days (Past 25-36 Months) -0.0018
(0.0015)

HTF Days (Past 37-48 Months) -0.0013
(0.0011)

Sample Main Main Main Main No Inund
Low Resilient

No Inund
High Resilient Northeast

Zip Code Yes Yes Yes Yes Yes Yes Yes
Month-County Yes Yes Yes Yes Yes Yes Yes
Year-County Yes Yes Yes Yes Yes Yes Yes

Observations 119,507 119,507 119,507 117,061 34,712 46,388 75,455

Note:
This table reproduces Table 5.1 by including month by county fixed effects as opposed to month fixed effects. Note, col-
umn (5) from Table 5.1 is excluded because observations are at the annual level. ∗p < 0.1; ∗∗p < 0.05; ∗∗∗p < 0.01.
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Figure A.1: Inundation Map (Atlantic Region)

Back to 3.1.
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Figure A.2: HTF Serial Correlation. These figures show the correlation between HTF frequency in year t and
year t-1 using (a) binned scatterplot and (b) residualized binned scatter plot where year and gauge dummies
are used for residualization.
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Figure A.3: Location of NOAA Gauge Stations. This figure depicts 84 NOAA gauge stations within the
contiguous US that has flood thresholds from Sweet et al. (2018).
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Figure A.4: The Effects of HTF on the Number of Daily Visits by Category. Panels (a)-(i) show the impact of
HTF on the number of visits in 10 leads and lags for destination categories. We control for county by year, zip
code by month, and date fixed effects. Grey areas show the 95% confidence interval.
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(a) Restaurant
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(b) Recreation

Figure A.5: The Effects of HTF on the Number of Visits to Local Amenities. These plots show the HTF
impact on the number of visits to local amenities in 10 leads and 30 lags. We control for county by year, zip
code by month, and day-of-week fixed effects. Grey areas show the 95% confidence interval.
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(a) 1- and 2-day PDD Flood
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(b) 3- and 4-day PDD Flood
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(c) 5- and 6-day PDD Flood
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(d) 7+ day PDD Flood

Figure A.6: The Effect of PDD Floods on the Number of Daily Visits by Event Duration. These plots show
the PDD impact on the number of visits during 10 days before and 10 days after a PDD event. We control for
month by zip code, year by county, and day-of-the-week fixed effects, and daily precipication.
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