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Abstract

While a theoretically consistent cost of flooding is a welfare loss from the event, most existing estimates
are based on direct and insured damage because of measurement challenges. In this paper, we leverage
variations in the occurrence of High-tide flooding (HTF), highly disruptive, yet rarely destructive
small scale coastal flooding, to estimate the indirect cost of flooding. Our analysis reveals that HTF
significantly disrupts daily lives, resulting in a 9.0% reduction in the number of visits per point-of-
interest on the day of HTF. Further, we show that exposure to one additional day of HTF in the past
12 months reduces rental rates by 0.23%, indicating that a lower bound indirect cost of flood is $45 per
day. Our findings suggest that omitting disutility from floods substantially underestimates the true
cost of floods.
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1 Introduction

During the tidal floods, which can happen several days each month, “you can’t have parties, you can’t

have get-togethers, and you can’t have friends over,” says Dunker, whose street in Hamilton Beach

has been repeatedly cut off by floodwaters since she moved in 23 years ago. “One year, it was flooded

from Thanksgiving to Christmas. We didn’t get a holiday that year. That’s how it is. You’ve got to

live with it.” (Curbed New York, Oct 12, 2017)

While floods have become more extreme in both intensity and frequency due to climate change,

most prior works studying the economic consequence of floods have focused on catastrophic events

such as hurricanes (Strobl 2011, Cavallo et al. 2013, Gallagher 2014, Hsiang and Jina 2014, Deryug-

ina et al. 2018, Deryugina and Molitor 2020). However, with the sea level rise, the frequency of

small-scale, rarely destructive, yet highly disruptive high tide flooding (HTF)—is rapidly increasing

along the coastal neighborhoods in the US (Sweet 2018, Taherkhani et al. 2020). For instance, NYC

had 17 days of HTF in 2017 alone, and many cities along the east coast are projected to experience

50+ days of HTF per year in the next 10–15 years (Thompson et al. 2021). Despite their prepon-

derance, and unique physical characteristics that allow researchers to estimate otherwise intricate

economic parameters, HTF has received disproportionately small attention.

However, understanding how HTF shape our daily lives and housing market is important for at

least two reasons. First, while a theoretically consistent cost of flooding is a welfare loss from the

event that encompasses both direct and indirect costs, most earlier studies on flood cost estimation

considered only direct damage because of measurement challenges (Gall et al. 2011, Kousky 2014).

HTF provides a unique opportunity to estimate the “indirect cost” of flood using the hedonic ap-

proach because it substantially disrupts daily lives but rarely incurs direct damage on material as-

sets.1 Second, given its current and expected prevalence and ruinous impact, understanding the im-

pact of HTF is of first-order importance in its own right.

In this paper, we provide one of the first empirical evidence on the impact of HTF on mobility and

rental rates. For this, we collect daily water level records for the past 20 years from 84 NOAA gauge

stations in the coastal states of the contiguous US and compare them with the site-specific flood
1Examples of indirect costs are business interruption, adaptation costs, loss of use value, mortality and injury, and

environmental degradation (Kousky 2014).
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thresholds to construct historical HTF occurrence data. We link this with zip code level monthly

rental rates data from Zillow (2015-2021) and daily points of interests (POI) visits data from Safe-

graph (2018-2021). To identify zip codes that have been exposed to the HTF, we primarily utilize

HTF inundation map from NOAA. Plausibly exogenous temporal and spatial variations in the HTF

occurrence form the basis of our identification.

We start our empirical exercise by providing direct evidence that illustrates how HTF disrupts ev-

eryday lives. Specifically, building on the earlier works that have documented the negative impact of

HTF on road conditions (Hino et al. 2019, Hauer et al. 2021, Hauer et al. 2023), we focus on how

HTFs affect mobility, namely the number of visits per POI. For this exercise, we leverage plausibly

random occurrence of the HTF and compare the number of visits per POI on a day with HTF to a

day without HTF within the same zip code. We find that on a day with HTF, the number of visits

per store decreases by 9.0%. One immediate concern is that this estimate might simply capture var-

ious substitution behaviors such as intertemporal substitution or stockpiling behavior (purchasing

more per store visit), which could exaggerate the “true” magnitude of disruption. By estimating (1)

category-specific (restaurants, retail stores, and entertainment venues) HTF effect and (2) HTF effect

by event time, we show that substitution behavior is not pronounced.

Next, we turn our attention to the impact of the HTFs on the rental rates. For this, we leverage

year-to-year variation in the HTF exposure and find that having one additional day of HTF in the

past 12 months reduces the average rent of affected zip codes by 0.23% or $45 at the mean annual

rental rate. Further, at mean annual number of days with HTFs (5.5), this translates into a 1.3% (or

$240) lower rental rate per year. Importantly, the impact of HTF on rent is larger for areas that had

larger impact of HTF on the number of visits, which implies that impaired mobility is an important

source of disutility from floods. Moreover, we estimate a rent–distance gradient and find that the

negative impact of HTF is monotonically decreasing as a property gets farther away from the coastal

line, and becomes indistinguishable from zero beyond 40 miles. Finally, the impact is similar between

zip codes with high versus low levels of climate change beliefs, which is plausible given that the phys-

ical impact of the HTF today is not contingent on the level of belief about the future.

Building on the hedonic model, we interpret the estimated impact of HTF on rent as willingness-

to-pay (WTP) to avoid disutility from floods, which is distinguished from direct damage on assets.

Such an interpretation builds on the fact that HTFs rarely incur direct damage, but disrupt daily
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lives. Armed with this parameter, we calculate two welfare estimates: indirect costs from the Presi-

dential Disaster Declaration (PDD) floods, which can be considered as “large” floods and welfare loss

due to the HTF. For the first exercise, we take the average MWTP $45 and multiply it by the num-

ber of households living in a county exposed to the PDD floods and by each events’ duration. The

resulting annual welfare cost is as large as $9 billion over the 2018–2021 period. Although this figure

is already substantial, we believe this number is likely to be a lower bound because (1) inconvenience

from large floods such as PDD floods would be much larger than inconvenience from the HTF and

(2) households exposed to smaller than PDD floods are excluded from this calculation.

For the second welfare exercise, we take the estimated effect (0.23%) and multiply this with zip

code-specific rental rates and the number of days with HTF. We find that over the 2015–2021 period,

welfare loss due to the HTF in the coastal communities in a given year is $6 billion. Note, this num-

ber is also likely to be a lower bound because we excluded zip codes that are overlapping with the

inundation map but not included in the Zillow rental data.2 Further, with an exponential increase

in the days with HTF due to the sea level rise, this number can grow as large as $29 billion in 2030,

although this estimate should be taken with a caveat because of the likely shift of the hedonic price

schedule over time.

This paper contributes to three different strands of literature. First, it is related to earlier works

estimating the cost of natural disasters (Nordhaus 2010, Mendelsohn et al. 2011, Strobl 2011, Cav-

allo et al. 2013, Smith and Katz 2013, Hsiang and Jina 2014, Desmet et al. 2021, Wing et al. 2022,

Burzyński et al. 2022). These works rely on either macroeconomic outcomes such as GDP or dam-

age on physical assets to measure the cost of natural disasters. This paper provides the first estimate

of the indirect cost of floods by connecting a novel identification strategy to the hedonic framework,

which is an important step toward a more comprehensive micro-founded cost estimate. The findings

suggest that ignoring indirect cost, which is at least $9 billion per year, could lead to a substantial

underestimation of the true cost of floods.

Second, it complements nascent literature studying the impact of HTFs on daily lives (Hino et al.

2019, Hauer et al. 2021, Griggs and Reguero 2021, Hague et al. 2022, Hauer et al. 2023). We pro-

duce the first empirical evidence on how the HTF affects mobility and a rental market, and presum-

ably more importantly, provide a welfare cost estimate. The findings indicate that HTF seriously
2Zip codes with infrequent transactions are excluded from Zillow rental data.
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threatens the quality of life in coastal communities, incurring a substantial economic costs.

Finally, this paper builds upon recent studies that have utilized highly frequent and geographically

detailed mobile phone data to assess spatial mobility patterns (Miyauchi et al. 2021, Athey et al.

2021, Abbiasov et al. 2022, Kreindler and Miyauchi 2023). Specifically, our approach is similar to

those that have used mobile phone-based visit records to estimate the impact of the pandemic and

related policy responses (Goolsbee and Syverson 2021, Couture et al. 2022). Our findings indicate

that harnessing cellphone data proves valuable in efficiently identifying areas affected by natural dis-

asters, thereby significantly enhancing the efficacy of disaster response efforts (Yu et al. 2018).

This paper proceeds as follows. Section 2 lays out a framework that conceptualizes the indirect

cost and guide empirical analysis. Section 3 provides background on the HTF, details the data

sources, and provides summary statistics. Section 4 analyzes the impact of HTF occurrence on

mobility, and Section 5 studies the impact of HTF on rental rates. Section 6 discusses welfare

implications. Section 7 concludes.

2 Conceptual Framework

We introduce a simple conceptual framework based on the hedonic model a la Rosen (1974) to more

formally define indirect costs and guide empirical analysis. Consider equation (1), describing the

daily utility of individuals living in a coastal housing unit.3 They allocate time between leisure L

and work T̄ − L to maximize utility (subject to the constraint). The wage rate is w and they spend

earned income on numeraire Z. The total daily time endowment is T̄ . Also, the utility function has

a shifter θ, which represents factors like the quality of surroundings (parks, infrastructure, or housing

structures) or individual health conditions. Further posit that their WTP to live in a house is the

net present value of future utility streams.

U = U(L, Z; θ) s.t. wL + Z = wT̄ (1)

In Figure 2.1, individuals choose (L0, Z0) in a normal day to maximize utility at U0(θ). Now, sup-

pose that an HTF event occurred and traveling from/to this house becomes more time consuming.
3Typically, hedonic models articulate consumer utility through housing characteristics and a numeraire. In our

approach, we add a time dimension to underscore the significance of indirect costs. Alternatively, we can incorporate
accessibility to various locations as a housing characteristic influenced by HTF.
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Figure 2.1: Defining Indirect Cost of Floods. This figure illustrates how HTF affects the budget constraint and
utility level.

Such a travel disruption effectively reduces the wage rate w.4 This will rotate the budget constraint

inward (blue arrow in Figure 2.1) and individuals adjust choices to (L0, Z1).5 Importantly, this will

reduce utility level to U1(θ) because of the income shock induced by HTF. In the case of a severe

disruption, where the travel time to work becomes excessively prolonged or traveling imposes some

risks, they may forgo working entirely, allocating their entire time to leisure. Utility loss from these

situations will be much larger than what Figure 2.1 illustrates.

While the discussion so far has focused on a working day (or working individuals), similar logic

applies to non-working days or individuals. For this, observe that L can be interpreted as time spent

away from home including leisure activities and Z can be interpreted as all domestic activities that

occur within the confines of the home. Further, we can rewrite the budget constraint in time as wL+

Z = T̄ where w can be interpreted as the additional time factor for engaging in activities away from

home.6 It is then straightforward that travel disruptions due to HTF will reduce utility also for non-

working days (or individuals).

In essence, the utility cost arises as floods change the relative price between L and Z, which in
4Note, HTF can negatively affect actual—rather than effective—wage as well especially for workers whose income is

heavily dependent on foot traffic (e.g., tipped employees or small business owners).
5While leisure time did not change due to HTF in Figure 2.1, it can either increase or decrease depending on the

shape of the indifference curve.
6For example, if L involves watching a 2-hour movie, with a 1-hour travel time to the theater, w would be 1.5.
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turn, force households to deviate from the optimal allocation of time. Further, such a utility loss

(i.e., lower WTP) will affect the housing prices. Discussions so far give rise to two empirical exer-

cises. First, estimating the impact of HTF on mobility, which can inform whether the HTF indeed

affects w. Second, estimating the impact of HTF on the housing prices, which allows us to recover

the utility costs. Because our focus is on the impact of HTF on the flow of utilities—rather than its

impact on future housing price expectations—we use rental rates for our empirical exercises.

Finally, equation (1) helps to highlight why the HTF based indirect costs estimates will underes-

timate the indirect costs from larger floods for two reasons. First, as detailed in Section 3.1, HTF

typically inflicts minimal direct damage, rarely causing changes in θ. In contrast, larger flood events

such as hurricanes will negatively impact θ (i.e., a park or health conditions), which will reduce

utility derived from leisure time or the purchase of leisure products. Second, even in the absence of

change in θ, reduction in w is likely to be larger (in magnitude) for larger floods.7

3 Background and Data

3.1 High-Tide Flooding

Trend. High-tide flooding (HTF)—also known as sunny day flooding or nuisance flooding—is a tem-

porary inundation of low-lying areas during exceptionally high tide events. While the tidal movement

is not new, HTF has become more prevalent in recent years due to sea level rise. As a result, the av-

erage number of days with HTF in the contiguous US has more than tripled in the past two decades

(Figure 3.1 (a)). Further, with rising sea level, many cities along the Atlantic Coast are expected to

have 50+ days with HTF in a given year by 2030 (Thompson et al. 2021).

The overall trend, however, masks a substantial heterogeneity across space and time. In terms of

space, as Appendix Figure C.1 and C.2 illustrates, the number of days with HTF has increased dis-

proportionately higher along the Atlantic Coast than the Pacific Coast. Such regional differences are

a product of two factors (Sweet 2018): (1) storm surge potentials are lower in the West Coast be-

cause of milder weather and bathymetric conditions; (2) over the last several decades, sea level rise
7Revisiting examples of indirect costs from Kousky (2014) helps to contextualize to what extent HTF based indi-

rect cost estimates are generalizable to larger floods. Business interruption, adaptation costs, and loss of use value are
likely to be captured by HTF (albeit to a lesser extent because of smaller change in w) while mortality and injury, and
environmental degradation are likely to be omitted because of no or minimal change in θ.
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(b) Detecting HTF using Water Levels Data

Figure 3.1: High Tide Flooding Trend Over Time and its Mesaurement. Panel (a) illustrates the number of
days with HTF between 2001 and 2022 averaged over the 84 NOAA gauge stations located within the contigu-
ous US. Panel (b) shows how to detect high tide flooding using NOAA daily water levels data.

has been slower in the Pacific Coast. In terms of time, HTF frequency is most prevalent over the fall

to winter period because of the alignment of earth and moon (Sweet 2018). These rich natural varia-

tions forms the basis of our identification strategy.

Measurement. NOAA defines HTF as an event where water level falls between minor and moderate

flood thresholds (Sweet 2018). To illustrate this, in Figure 3.1 (b), we overlay daily maximum wa-

ter height for 2018 from a gauge station in Boston. A few points are worth noting. First, the graph
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clearly shows that the HTF pattern is in sync with the moon phases, which is consistent with the

physics behind the phenomenon (i.e., a product of tidal movement). Second, water levels can exceed

the minor threshold as a precursor to or a descendant of a larger flood event. For instance, the water

level in the highlighted period (March 4, 2018) in Figure 3.1 (b) is between the minor and moderate

threshold, but this is not a “true” HTF that incurs minimal direct damage because it is preceded by

a major flood on March 2. In defining HTF, we exclude these cases because of potential direct dam-

age incurred by preceding or following larger floods—practically, we use a ± 3-days window. Further,

we separately document dates with water level higher than “moderate” or “major” thresholds to con-

trol for the impact of large flood events.

Affected areas. Our primary data to identify the spatial extent of the HTF comes from NOAA in-

undation map.8 The map delineates the boundary of inundation area upon the HTF occurrence us-

ing the “bathtub approach”, which compares the predicted water surface level to the land elevation

(NOAA 2017). Given that this map shows predicted inundation areas rather than realized inundation

areas, we validate the NOAA inundation map by comparing it to an “empirical inundation map” we

generate. Specifically, building on prior studies that have documented serious disruptions in mobil-

ity due to HTFs, we investigate if mobility in zip codes predicted to be inundated has indeed been

adversely affected by HTF events (for details, see Appendix B).

Impact. Anecdotal evidence suggests that HTF seriously disrupts daily lives. For instance, people

have trouble getting to work; give up outdoor exercise, dog walk, or restaurant gatherings; wade

through brackish water, suffering skin rashes (Flechas and Staletovich 2015, Alvarez and Robles

2016, Kensinger 2017, Mazzei 2019, Bittle 2022). Scientific studies have also documented business

disruptions and commuting challenges (Hino et al. 2019, Hauer et al. 2021, Hauer et al. 2023).

Importantly, despite these disruptions, HTF rarely causes direct damage. In Figure 3.2, we plot

the number of the National Flood Insurance Program (NFIP) claims by flood types. Panel (a) shows

that only 7% of communities file more than 5 claims after an HTF event.9 This is a stark contrast

to floods that are moderate or larger (Panel (b)), which shows that in 37% of cases, the number of
8Accessed at https://coast.noaa.gov/slrdata/. We use the “Flood Frequency” product.
9The number of claims can be positive for HTFs as well for at least two reasons. First is a measurement issue.

Because HTF “occurs” whenever water level falls between minor and moderate flood threshold, there are HTFs that
are closer to “moderate” sized flood. Indeed, when we define HTF as floods that fall under minor and Minor+Moderate

2
threshold, the fraction falls from 7 to 5.8%. Second, anecdotes report that HTF floods basements (Kensinger 2017).
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Figure 3.2: Average Number of the National Flood Insurance Program (NFIP) Claims for Different Flood
Sizes. Panels (a) and (b) show how the average number of NFIP claims from each NFIP community differ by
flood size between 2001 and 2019.

claims are higher than 5.

3.2 Data Description

Rental Rates. We use Zillow Observed Rent Index (ZORI), which documents quality-adjusted aver-

age monthly asking rents for all homes and houses within the 35th to 65th percentile price range.10

It also adjusts for the likelihood of units being listed to represent rental rates across the entire mar-

ket. We use the zip code-level data from March 2015 to December 2021. To connect zip code with

HTF events, we link each zip code to the nearest NOAA gauge station. Given that HTF is unlikely

to have any impact for inland states, we restrict our sample to the zip codes within the 21 coastal

states in the contiguous US.11

Water levels. We construct coastal flood history data using the NOAA water levels data from

84 gauge stations in the contiguous US (See Appendix Figure C.1 for gauge station locations). We

retrieve verified daily high water level data for each gauge station using R package “rnoaa”.12 Then,

for each station, we compare time series of water height to the flood thresholds from Sweet (2018),

which is objective and nationally consistent set of minor, moderate, and major coastal flooding
10For more detail, see https://www.zillow.com/research/methodology-zori-repeat-rent-27092/ (accessed on Mar 2,

2023).
11The list has AL, CA, CT, DE, FL, GA, LA, MA, MD, ME, MS, NC, NH, NJ, NY, OR, RI, SC, TX, VA, and WA.
12For datum, we use mean higher high water (MHHW) following NOAA flood thresholds.
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thresholds, to detect flood events.

Mobility. To explore the HTF’s impact on mobility, we use mobile phone based visit counts data

from SafeGraph. The data documents daily number of visits to 12 million points of interest (POIs)

in the US from 45 million smartphone users for 2018–2021.13 The data also provide the location in-

formation for each POI at the census block group level and its industry category based on the North

American Industry Classification System (NAICS) code. For empirical analysis, we first spatially

match census block group to zip code and aggregate POI level data to the zip code level. Further,

we restrict the data to zip codes which have at least 10 visits per week.14 While Safegraph data al-

low for analyzing mobility patterns with high spatial and temporal granularity, previous studies have

documented measurement issues Knittel et al. (2023). In Appendix A, we discuss these potential

concerns in detail and explain how we address them.

3.3 Summary Statistics

In Figure 3.3 (a), we show the distribution of the number of days with HTF that a zip code in our

sample experienced during the past 12 months from a given year-month over the 2015–2021 period.

Consistent with a rapid increase in HTF incidents, the histogram shows that more than 80% of ob-

servations had HTF incidents in the past 12 months. Also, the shape of the distribution suggests

that the average number of days with HTF (5.5) is unlikely to be driven by a few extreme values.

The distribution demonstrates a large mass in the 1 to 10 range, which provides rich variation for

our empirical analysis.

In Figure 3.3 (b), we present how the average number of visits per POI has changed over the 2018–

2021 period.15 As Appendix Table C.1 shows, the vast majority of POIs in the data are non-work re-

lated POIs such as retail stores, restaurants, entertainment and health care.16 These POIs are every-

day destinations with frequent visits, which is useful to detect any anomaly in the number of visits

caused by HTF. Indeed, the time series suggests that the number of visits are stable over time except

for the pandemic period.

Table 3.1 shows summary statistics for additional variables used in our empirical exercise. A two
13See https://docs.safegraph.com/docs for more details (accessed on Jun 15, 2023).
14In Section 4, we show that our results are robust to the choice of the threshold.
15Safegraph data started in 2018.
16Indeed thw three categories in Table 4.1 make up 55% of the POIs and 66% of the trips.
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Figure 3.3: Summary Figures. These figures show (a) the histogram of the number of days with HTF events at
the zip code level and (b) the average number of visits per POI over time.

Table 3.1: Summary Statistics for Key Variables

Variables Min. Max. Mean Std.Dev. N

Rental Rates 132 391,867 19,243 10,881 172,364
% Inundated 0 89.72 3.51 8.23 172,364
Distance to the Coast (Miles) 0.018 113 12.65 14.95 172,364
N High Tide Floods (Per Year) 0 44 5.45 4.76 172,364
N Mod+Large Floods (Per Year) 0 11 0.46 0.983 172,364

points are worth noting. First, an average annual rent for the zip codes that has any overlap with

the NOAA inundation map—which is our primary sample—is $19,243 ($1,604 per month). This is

nearly $5,000 higher than the average annual rent for all other zip codes in the Zillow rent dataset

that are not overlapping with the inundation map.17 The difference in the rental rates (at least

partly) reflects amenity value of being closer to the ocean. The level difference in rental rates suggest

that zip codes outside of the inundation map might not be a good control group. Thus our empirical

analysis focuses on within inundation area variations.

Second, the distance from a zip code centroid to the closest coastal line is on average 12.7 miles

while the maximum distance is over 100 miles. While 100 miles seem implausible given that the

event is driven by tidal movement, this can happen for various reasons. For instance, the inundation

map suggests HTF can have ripple effect through interconnected rivers leading on the the ocean.

Additionally, geological conditions, such as permeable limestone bedrock in Florida, can induce
17There are 7,042 zip codes in the ZORI data and 2,102 of them have an overlap with the NOAA inundation map.
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inundation in inland areas.

4 High Tide Flooding and Impaired Mobility

In this section, we provide evidence that HTF indeed affects w in equation (1). Building on the ear-

lier findings on the detrimental impact of HTF on road/traffic conditions (Hino et al. 2019, Hauer et

al. 2021, Hauer et al. 2023), our exercise focuses on identifying the impact of HTF on mobility. For

this, we estimate equation (2).

log(V isitszdt) = βFzdt + γXzdt + αzwm + θct + Pzdt + ϵzdt (2)

Here log(V isitszdt) is log of average number of visits per POI for zip code z in date d (e.g., Jan 1) at

year t. Fzdt is a dummy variable that takes 1 when there is HTF for zdt. We control for time-varying

zip code-level characteristics Xzdt, which include moderate or larger flood event occurrence, the frac-

tion of population with college degree, the fraction of minority populations, median income, and the

fraction of rental units. We also flexibly control for the effects of precipitation by including daily pre-

cipitation bins (Pzdt). We include zip code by day-of-the-week by month fixed effects (e.g., Monday

in January), αzwm, to control for zip code specific seasonality as well as differences in visit patterns

by day. We also include county by year fixed effects, θct, to control for county specific shocks that

might affect visits, such as the differential impact of pandemic across counties. The coefficient of

interest is β, the effect of HTF on the number of visits per POI. We expect β < 0 as HTF makes

travel more time consuming or completely prohibits travel in the first place. To prevent composition

changes, we use the identical set of zip codes as Section 5.

We also fit an event study model using equation (3). Here we estimate the daily impact of HTF on

visits per POI for 7 days before and after the event.18 The key independent variable is Dzpdt,τ , which

is a dummy variable that takes 1 if it is the τth day since the day of HTF event.

log(V isitszdt) =
∑

τ∈[−7,7],τ ̸=−1
βτ Dzdt,τ + γXzdt + αzwm + θct + Pdt + ϵzdt (3)

18We do find consecutive HTFs in our sample, however, these events account for less than 5% of the HTF. Therefore,
we exclude these events for our event study estimation.
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Table 4.1: Effect of High-Tide Flooding on the Number of Visits

(1) (2) (3) (4)

HTF Event -0.094*** -0.092*** -0.081*** -0.114***
(0.007) (0.007) (0.007) (0.008)

Types All Accommodation
and Food

Retail
Trade

Arts Entertainment
and Recreation

Observations 3,054,951 3,041,802 3,052,029 3,049,107

Note:
This table presents the effect of HTF on normalized visits based on
equation (2) for zip codes overlapping with the NOAA inundation
map. All outcome variables are in log scale and all columns include
baseline controls (moderate or larger flood event occurrence, the
fraction of population with college degree, the fraction of minority
populations, median income, the fraction of rental units, precipita-
tion, county by year fixed effects, and zip code by day-of-week-of-
month fixed effects). Column (1) shows the effect for all POIs whereas
columns (2)-(4) are for three specific types of POIs. Standard errors
are clustered at the county level. ∗p < 0.1; ∗∗p < 0.05; ∗∗∗p < 0.01.

Table 4.1 presents the impact of HTF on the number of visits per POI. Column (1) shows that

being exposed to HTF leads to a 9.0% (e−0.094 − 1) decrease in the number of visits per POI (for all

categories), suggesting that HTFs indeed incur substantial disruptions in mobility. It is important

to note that a 9.0% reduction only captures the extensive margin effect, and thus underestimate the

extent of disruptions. That is, while some people might still complete a trip by taking an alternative

route or simply driving slowly, which increases the time cost, the estimate in column (1) does not

reflect such a cost.

One potential concern for column (1) is that it might capture an effect from various substitution

margins, and thus overstating the true magnitude of disruption. For instance, similar to consump-

tion responses to extreme temperatures reported in Lee and Zheng (2023), people might reduce the

number of trips while maintaining consumption level by increasing the amount purchased per trip

or simply switch the date of visit.19 To explore these possibilities, we explore category specific treat-

ment effect for three largest POI categories in columns (2)–(4). Importantly, because some POIs pro-

vide services that are easier to stockpile than others (e.g., products from retail stores are easier to

store than products from entertainment service venues), we can test if a higher purchase per store
19Another potential margin is spatial substitution. Namely, people might visit stores in unaffected areas. While this

is plausible, we believe that the effect in column (1) is not likely to capture this effect because our HTF measure varies
only at a large geographical scale (because NOAA gauge stations are sparsely located).
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visit might explain a 9.0% reduction. We find that the impact of HTF on the number of visits per

POI are by and large similar across different types of POIs, which rules out the stockpiling margin.

If anything, we find that the point estimates is smallest for the retail trade category.20

Further, event study graphs in Figure 4.1 suggest that there is no active intertemporal substitu-

tion. That is, we find a very sharp reduction in the number of visits per POI on the day of HTF, but

there is no discernible anticipatory effect before the event. We find a small rebound effect after 5–7

days since the HTF, but the magnitude is roughly 1/3 of the reduced visits. Such a pattern is con-

sistent with Roth Tran (2022), which report limited intertemporal and spatial substitution in apparel

purchases in response to rainfall. Taken together, the impact we find in column (1) in Table 4.1 does

not seem to be driven by these margins of substitutions.21

Finally, we leverage the impact of HTF on mobility to provide additional evidence on the nature of

HTF. That is, while Figure 3.2 shows that the number of flood insurance claims are small for HTF,

there might still be physical damage due to HTF, albeit too small to claim flood insurance. The

number of visits to various repair shops after HTF can provide a useful insight to this regard. That

is, if HTF causes direct damage on assets, people might visit auto repair shops, hardware stores, or

electronics repair shops more often than usual.

Appendix Figure C.3 shows the result. Similar to other POIs in Figure 4.1, we find a sharp drop

in the number of visits per POI on the day with HTF. Some POIs, in particular home and garden

repair shops, show rebound in the post period, which suggests some damage incurred due to HTF.

This is consistent with anecdotal evidence which find that HTF might flood basement, for instance.

However, we also do note that the cumulative effect of HTF on the number of visits for home and

garden repair shops are still negative at -29% (e−0.34 − 1).22 This indicates that although there seems

to be some increase in the number of visits to these repair shops, the magnitude seems small which is

consistent with Figure 3.2 that HTF rarely incurs direct damage on assets.
20Safegraph data has sales data for each POI, which potentially allow us to directly test a stockpiling behavior.

However, this data is only available at the monthly level. Further, sales data is available for a subset of POIs, which
may create a selection issue as well.

21Another robustness check for column (1) comes from Appendix Table C.2. As discussed in Section 3.3, we restrict
the data to zip codes which have at least 10 visits per week. Appendix Table C.2 shows that the results are essentially
identical even if we change the threshold.

2295% CI for the point estimate (-0.34) is -2.27 to 1.58.
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(b) Accommodation and Food Services
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(d) Arts, Entertainment, and Recreation

Figure 4.1: The Effects of HTF on the Average Number of Daily Visits by Event Time. These plots show the
HTF impact on the number of visits in event time (7 days before and after the HTF event). We control for
moderate or larger flood event occurrence, the fraction of population with college degree, the fraction of mi-
nority populations, median income, the fraction of rental units, precipitation, county by year fixed effects, and
zip code by day-of-week by month fixed effects.

5 Effect of High Tide Flooding on Rental Rates

To estimate the impact of HTF on rental rates, we estimate the regression model in equation (4) us-

ing zip codes that are overlapping with the NOAA inundation map.

log(Yczmt) = βFzmt + γXzmt + αz + θct + θm + ϵczmt (4)

Here Yczmt is logged average monthly rent for zip code z within county c in month m at year t. We

control for time-varying zip code-level characteristics in Xzmt, which are the number of days with

moderate or major flood events in the past 12 months, the fraction of population with college degree,

the fraction of minority populations, median income, and the fraction of rental units. We include
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these as baseline controls, but also show that our estimates are robust to these control variables.

We also include a rich set of fixed effects. Zip code fixed effects αz control for time-invariant zip

code level characteristics, which allow us to leverage plausibly random deviations from average HTF

exposure for each zip code. We also include year by county (θct) and month (θm) fixed effects. θct

accounts for county specific shocks in a given year, for instance, local housing market shocks during

the pandemic. θm accounts for seasonality.

The key independent variables are the measure of the HTF exposure Fzmt, which is the number

of days with HTF in the past 12 months for a zip code z at time mt. As discussed in Section 2, the

choice builds on the idea that a household’s willingness to pay for a rental unit is determined by the

net present value of future daily utilities, and the HTF exposure in immediate past is a good pre-

dictor of future exposure. β captures the impact of being exposed to an additional day of HTF on

the rent. We show that the estimated effect is robust to alternative specifications including a non-

parametric approach where we regress a set of HTF frequency bins on monthly rent.

Table 5.1 shows the impact of HTF exposure on rental rates. The estimated coefficient in column

(1) indicates that being exposed to one additional day of HTF within the past 12 months reduces

average rent by 0.23%. Given that the average number of days with HTF in the sample is 5.5, the

estimated coefficient suggests a 1.3% or $240 decline (evaluated at the mean annual rent per unit

$19,243) in annual rent per unit. In column (2), we control for county specific linear time trend as

opposed to the year by county fixed effects. The estimated coefficient, which is similar at 0.17%, sug-

gests that the result in column (1) is robust to an alternative specification.

In column (3), we present heterogeneous treatment effect by the mobility effect size to test if the

disruption in mobility can explain the reduction in the rental rates. To that end, we create an indica-

tor variable that takes 1 if the zip code specific impact of HTF on mobility (details in Appendix B)

has a larger magnitude than median (-0.056) and interact this term with the Fzmt term. The point

estimates in column (3) show that the impact of one additional day of HTF is twice larger for zip

codes with high mobility impact. This suggest that impaired mobility is one of the important reasons

behind the rental rate adjustments.

In columns (4)–(5), we estimate the impact for zip codes with different climate change beliefs. For

this, we first create two dummy variables about county-level climate belief level using survey results
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Table 5.1: Effect of High-Tide Flooding on Log Rental Rates

(1) (2) (3) (4) (5)

N Days with HTF -0.0023*** -0.0017*** -0.0016*** -0.0028*** -0.0027***
(0.0004) (0.0004) (0.0005) (0.0007) (0.0008)

N Days with HTF x High Disruption -0.0015*
(0.0008)

N Days with HTF x Low Happening 0.0009
(0.0007)

N Days with HTF x Low Worried 0.0006
(0.0008)

Fixed-Effects: ———- ———- ———- ———- ———-
Zip Code Yes Yes Yes Yes Yes
Month Yes Yes Yes Yes Yes
Year-County Yes No Yes Yes Yes
Distance to Coast Yes Yes Yes Yes Yes
County No Yes No No No
Varying Slopes: ———- ———- ———- ———- ———-
Year (County) No Yes No No No
Observations 170,900 170,900 167,301 170,900 170,900

Note:
This table presents the effect of HTF on rents based on equation (4) for zip codes overlapping with
the NOAA inundation map. All outcome variables are in log scale and baseline controls (number
of days with moderate or major flood events in the past 12 months, the fraction of population with
college degree, the fraction of minority populations, median income, and the fraction of rental units)
are included in all columns. Standard errors are clustered at the county level. ∗p < 0.1; ∗∗p < 0.05;
∗∗∗p < 0.01.

from the Yale Climate Opinion Maps of 2013 (Howe et al. 2015). Specifically, we create variables

“Low Worried” which takes value 1 if the fraction of respondents who said yes to a question asking

whether they are worried about climate change is below median.23 Similarly, we create a variable

“Low Happening” using responses to a question asking whether they believe climate change is hap-

pening. We then interact the climate belief variables with Fzmt from equation (4).

Interestingly, in both columns (4) and (5), we find no differential effect between high versus low

believers, which is plausible as long as the reduction in the rental rates reflect lower physical amenity

value from a housing service. That is, the utility cost of not being able to travel on the day of HTF

would not necessarily higher or lower depending on whether they believe such inconvenience is
23For instance, a zip code is classified as “Low Worried” if it belongs to a county with less than 57.5% of people re-

sponded that they are worried about climate change. Note, this is substantially higher than the national average, which
is 48%, which suggests that coastal community residents in general have much higher awareness on climate change than
their inland peers.
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caused by climate change or not. Importantly, a similar effect size for high versus low belief groups

contrasts earlier findings in the literature that the housing price reflects flood risk only for high belief

groups (Bernstein et al. 2019, Baldauf et al. 2020). The seemingly inconsistency can be explained

once we account for the fact that a key determinant of the housing price is long term expectations on

the housing price, which rarely is the case for rents. This emphasizes the importance of using rent as

an outcome variable to measure the indirect costs of flood.

As robustness checks, in Appendix Table C.3, we repeat the same exercise as Table 5.1 without

including baseline controls. The results are strikingly stable, which reflects the nature of plausibly

exogenous variations we are leveraging.

The results so far relied on an implicit parametric assumption that the relationship between the

HTF exposure and rental rates is linear. Given earlier studies that have emphasized the importance

of allowing non linear relationship in estimating the impact of natural disasters (Hsiang 2016), we

also non-parametrically estimate the impact of HTF on rental rates. For this, we create an indica-

tor variable equal to 1 when the number of days with HTF in the past 12 months for a zip code in a

given year-month is in bin k where k ∈ {0, 1-2, 3-4, 5-6, 7-8, 9-10, Over 11 }. In this model, k = 0

serve as the baseline omitted category. Thus, the estimated coefficients for each bin indicates the ad-

ditional rental rate impact when a zip code experiences k additional day of HTF as opposed to 0.

Figure 5.1 (a) shows the result. First, consistent with the marginal effect estimated in Table 5.1

column (1), the graph shows that rental rates monotonically decrease as exposure increases. For

instance, while having 1 or 2 days with HTF reduces rental rates by 1%, having 9 or 10 days with

HTF affects rental rates by nearly 3%. Notably, the curve’s slope indicates that the first order

approximation successfully represents the relationship between HTF exposure and the rental rate,

which is useful for welfare analysis because we can measure marginal willingness to pay using the

linear model estimates.24

Figure 5.1 (b) breaks down the effect in Table 5.1 column (1) by distance to the coastal line. For

this, we separately estimate equation (4) for zip codes that belongs to each 10–miles distance bin {0–

10, 10–20, · · ·, 40–50} to the closest coast. The estimated gradient suggests that the effect size gets
24In Appendix Figure C.4, we more directly explore potential specification error by plotting two predicted rental

rates based on the linear and non-parametric estimates. The figure suggests that the slope of the linear model is very
close to the slope of the non-parametric model (despite the level difference). This suggests that estimating MWTP
based on the linear model well approximates the true MWTP.
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(b) Rental Impact by Distance to the Coastal Line

Figure 5.1: Price Effect by Frequency and Distance. This plot shows how the price effect of the HTF varies
by (a) the number of HTF incidents and (b) the distance of a zip code to the nearest coastal line. For (a), we
regress the number of HTF exposure bins (e.g., the 1-2 bin indicates that a zip code had 1 or 2 days of HTF
exposure in the past 12 months) on the log of monthly rent. For (b), we regress the number of days with HTF
in the past 12 months on the log of monthly rent for each 10-miles distance bin with baseline controls. Shaded
area represents the 95% confidence interval.

smaller as zip codes gets farther away from the coastal line, which is plausible given that the impact

of HTF is likely to become smaller as we move farther away from the coastal line. However, it is also

noteworthy that zip codes that are 30 to 40 miles away from the coast are still negatively affected

(although with smaller magnitudes) by the HTF. This is likely to happen for at least two reasons.

First, sea water can travel upstream through the connected rivers impacting areas farther away from

the coast. Second, disruptions caused by high-tide flooding may not be limited to the immediate af-

fected area. For example, the paralysis of key nodes in the city-wide road network could create a rip-

ple effect and lead to further disruptions throughout the city (Hauer et al. 2021, Hauer et al. 2023).

6 Discussion

Building on the hedonic framework (Rosen 1974), we conduct a back-of-the-envelop welfare calcula-

tions using the HTF impact on rents. As discussed earlier, we interpret the 0.23% or $45 reduction

in rent resulting from one additional day of HTF (Table 5.1 Column (1)) as marginal willingness-to-

pay (MWTP) to avoid disutility from floods, which is distinguished from direct damage on assets.

Such an interpretation builds on the fact that HTFs rarely incur direct damage, but disrupt daily

lives. Armed with this parameter, we calculate two welfare estimates: indirect costs from the Presi-
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dential Disaster Declaration (PDD) floods, which can be considered as “large” floods and welfare loss

due to the HTF.

Welfare cost of PDD floods. Given that larger floods tend to create much larger disruptions in

people’s lives—for instance, tens of thousands of flood victims are displaced for a prolonged period,

the indirect cost estimated using the MWTP to avoid HTF should be regarded as a lower bound.

With this caveat, we take the average MWTP ($45) from Figure 6.1 (a) and multiply it by the num-

ber of households living in a county exposed to the Presidential Disaster Declaration (PDD) floods

and by each events’ duration.25 The number of household for each county comes from the American

Community Survey.26 For the duration of an event, we leverage the “incident window” in the PDD

dataset from FEMA after making a few adjustments.27

Specifically, because incident window does not always correspond to the actual physical flood

duration—its primary purpose is to establish the date range for damage or losses to be eligible for

federal disaster assistance, and thus the window can be much wider than the actual flood duration

(FEMA 2022)—we first cap the incident window at a week to prevent overstating the duration.

Further, we compare the incident window to an empirical flood duration, which we estimate using

the cellphone data similar to our exercise in Section 4. For this, we separately estimate equation

(3) for flood events with documented “incident window” of 1–2, 3–4, 5–6, and 7+ days, and identify

the number of days with statistically significant negative mobility impacts. Appendix Figure C.5

shows that (1) a PDD has a much larger and longer impact on the number of visits than a HTF

and (2) incident window does not seem to overestimate the flood duration once we cap the window

at a week. For instance, the number of visits is 20% lower than usual even after three days of PDD

occurrence for PDD floods with incident window of 1-2 days (Appendix Figure C.5 (a)).

By combining information on the duration and the number of households, we find that over the

2018–2021 period, 26–69 million households in a given year were living in a county that has experi-
25An implicit assumption behind this approach, which is widely used in the literature, is that the MWTP curve has

a flat slope (Muehlenbachs et al. 2015, Bishop et al. 2020). If we assume instead that the MWTP curve is vertical,
then it essentially means that we consider the duration of each flood event as one. If we assume a downward sloping
MWTP curve instead, the indirect cost estimate will lie between the vertical and flat MWTP curve cases.

26We are planning to mitigate potential measurement errors in assessing the number of affected households (i.e.,
recognizing that not every resident in the county may have been affected by a PDD) by estimating mobility impacts
specific to each zip code and incorporating only those zip codes with negative impacts.

27Downloaded from https://www.fema.gov/openfema-data-page/disaster-declarations-summaries-v2 (Apr 29, 2023).
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Figure 6.1: Welfare Loss from Floods. Panels (a) and (b) show the distribution of marginal willingness to pay
to avoid HTF and welfare losses per zip code, respectively.

enced a PDD flood,28 and the corresponding household–days are 111 to 300 million. By multiplying

the estimated indirect cost per flood day ($45 per household) with 200 million, which is the aver-

age household–days with PDD flood exposure over the 2018–2021 period, we find that the welfare

cost is at least $9 billion per year. While acknowledging the underlying differences in methodologies,

comparing $9 billion with a direct cost estimate of floods in the US ($32.1 billion) from Wing et al.

(2022) underscores the potential significant underestimation of true flood costs when indirect costs

are disregarded.29 We believe $9 billion might be a lower bound indirect cost because (1) inconve-

nience from large floods such as Presidential Disaster Declaration floods would be much larger than

inconvenience from the HTF and (2) households exposed to smaller than PDD floods are excluded

from this calculation.

Welfare cost of HTF. Impact of HTF on rents can also inform the welfare cost of HTF. For this,

we use the annual welfare cost of HTF per year ($45 × 5.5 = $240) from Section 5.30 Using the num-
28A useful benchmark to assess this estimate comes from Wing et al. (2022), which have estimated the average

annual exposure (AAE) of the current US population to flooding at 3.63 million. While this number is an order of
magnitude smaller than the estimate we use, we want to note that the AAE estimate focuses on the population who
are expected to have direct damage. In other words, the number of households exposed to indirect costs can be much
larger.

29The $32.1 billion estimate captures damage from non-PDD floods as well, which implies that the direct damage
from PDD floods only is likely to be smaller than $32.1 billion.

30Note, $240 is an average WTP for the entire sample, which is a product of average MWTP and average number of
days with HTF. Alternatively, we could calculate zip code specific WTP (Figure 6.1 (b)) by multiplying zip code spe-
cific MWTP (Figure 6.1 (a), which is calculated by multiplying 0.23% with zip code specific average annual rent) with
zip code specific HTF exposure. We find that the resulting average annual welfare loss per household is $230 per year,
which is very close to $240.
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ber of households residing in the 2,102 zip codes, which totals 24 million households, we find the to-

tal welfare loss due to the HTF is $6 billion per year over 2015–2021 period.

While this is a strikingly large number given that HTF rarely incurs direct damage, it should be

noted that this number is likely to be a lower bound for multiple reasons. For one, we did not ac-

count for 1,279 zip codes that are overlapped with the NOAA inundation map, but are not included

in the Zillow rental data primarily because of less frequent rental transactions. Further, if the hedo-

nic price schedule itself shifts due to the HTF, the estimated welfare cost is a lower bound of true

welfare cost (Banzhaf 2021).

Next, we take these numbers and project welfare losses in 2030 based on the expected number of

HTF events. For this, we leverage findings from Thompson et al. (2021), which has projected the

number of HTF per year for each NOAA site. The blue histogram in Figure 6.1 (b) shows the distri-

bution of welfare loss for each zip code in 2030, which has been substantially shifted out in compari-

son to the histogram of 2015–2021 period because of more frequent HTF due to accelerating sea level

rise. Consequently, the total welfare loss from 2,102 zip codes is $29 billion, which is more than four

times larger than the 2015–2021 average.

While this numbers suggests that we need to take the impact of HTF seriously, it also needs to be

interpreted with caution. For one, a flat MWTP curve approximation works well with small changes

in amenity levels, but the number of days with HTF in 2030 is clearly a dramatic change. Relatedly,

the impact is likely to be highly non-linear as a prolonged inundation is likely to impose an increas-

ingly grave inconveniences on daily lives. Conversely, the welfare loss could be much smaller in the

future, especially when cheap mitigation technologies become available.

7 Conclusion

While theoretically consistent cost of flooding is a welfare loss from the event, existing flood cost es-

timates are based on direct damage due to measurement challenges. In this paper, we leverage varia-

tions in HTF, a highly disruptive yet rarely destructive flood events, to estimate the indirect cost of

floods.

Using granular location data from mobile devices, we find direct evidence of disruption caused by

HTF: on the day of the event, the number of visits per POI declines by 9.0%. Further, using zip
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code level rental rates data, we show that being exposed to one additional day of HTF in the past

12 months reduces rents by 0.23% or $45 per day. Importantly, the reduction in the rental rate from

HTF is twice as large for zip codes with high mobility impacts, suggesting that impaired mobility is

capitalized into the rental rates. We also find that the impact is similar for high versus low climate

belief zip codes. This indicates that physical inconvenience reduces utility from housing services irre-

spective of one’s belief.

Building on the hedonic model, we show that a lower bound of inconvenience cost from large flood

events (i.e., Presidential Declaration Disaster floods) over the 2018–2021 period is $9 billion per year.

Further, the welfare cost of HTF is estimated to be additional $6 billion dollars per year over the

2015–2021 period, and is expected to become as large as $29 billion per year in 2030. Our findings

suggest that ignoring indirect costs can substantially underestimate the true cost of floods.
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A Measurement Issues with the Safegraph Data
Safegraph collects location data from roughly 10% of mobile devices in the US (Parolin and Lee
2021). While this data allow analyzing mobility in an unprecedented detail, previous research has
pointed out at least three different measurement issues. First, Safegraph collects location informa-
tion using the mobile GPS positioning process. This inherently generates measurement error because
its accuracy is guaranteed only at the 5 meters level. This implies that the GPS positioning might
not be able to distinguish whether a user is in one store or another especially in dense urban areas
(Knittel et al. 2023). However, we believe that this is a less of a concern especially when our atten-
tion is understanding the average number of visits to any POI at the zip code level. This could be
more problematic when we explore the industry specific effect, but even in that case, industry classi-
fications are broad enough to mute measurement errors from the GPS positioning process.

Another caveat is that the data represents a subset of population who have a smartphone and who
have agreed to share their location. Consequently, specific demographic groups with limited smart-
phone access, such as elderly or low-income individuals, may be underrepresented in the data. This
implies that our estimates on the impact of HTF on visit counts should be interpreted as a lower
bound because these demographic groups are more vulnerable to floods including HTF.
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(b) Normalized Visit Counts

Figure A.1: The figures show the standardized counts of total monthly raw and normalized visits to all Safe-
graph POIs in our samples. We standardized the visit counts using Jan 2018 as the base month. See text for
more details.

Lastly, the sampling rate (i.e., the number of devices included in the Safegraph data out of the to-
tal number of devices in the US) has changed substantially over time (Kurmann and Lalé 2022). Ap-
pendix Figure A.1 (a) plots the average number of visits per POI over time using the raw data using
January 2018 as the baseline. The time series shows that the number of visits has increased substan-
tially in the first half of 2018. The number continues to grow before it plummeted in early 2020 due
to the pandemic. There is a rebound over time, but even by the end of 2021, the number of visits is
1.5 times of the baseline, which is substantially lower than the pre pandemic period. Such a dramatic
change in time series could be driven by a range of factors such as changes in the sample of cellphone
devices used for data collection (Kurmann and Lalé 2022).

To account for this issue, we follow Kurmann and Lalé (2022) and divide the zip code specific daily
number of visits per POI by zip code specific monthly number of cellphone devices.31. For instance,

31Given that Safegraph only provide information about the number of devices at the month and census block group
level, we aggregate the number of devices to zip code level and then match with weekly-zip-code level visit data.
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zip code 02138 has 1.2 visits per POI on Jan 1, 2018. We normalize this by dividing 1.2 by 10, which
is the number of cellphone devices for the zip code 02138 in January of 2018. Figure A.1 (b) depicts
the normalized visit counts for all POIs, which is substantially smoother than Figure A.1 (a).
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B Validating NOAA Inundation Map Using Safegraph Data
Earlier studies document a detriental impact of HTF on road/traffic conditions (Hauer et al. 2021,
Hauer et al. 2023), which suggests that the number of trips will be critically influenced by the HTF
event. Indeed, Hino et al. (2019) finds that the number of visits to historic downtown of Annapolis
MD reduces by 1.7% on the day of HTF.

Building on this observation, we leverage Safegraph data to construct an empirical inundation
map. That is, by estimating the impact of HTF on the number of visits per POI, we can identify the
areas affected by HTF. For this, we estimate equation (2) for each zip code that is within 50 miles
from the coastline. Standard errors are clustered at the two-week period level.
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Figure B.1: Histogram of Zip Code Specific Mobility Impacts. These histograms depict the zip code-specific
impact of HTF occurrence on the logged number of visits per POI. The green histogram contains all zip codes
within 50 miles from the coastal line, while the blue histogram excludes zip codes with statistically insignifi-
cant effects at the 90% confidence level. Two red lines mark the median point estimates for the two samples.

Appendix Figure B.1 shows two histograms of zip code specific coefficients. The green histogram
contains all zip codes within 50 miles from the coastal line, while the blue histogram excludes zip
codes with statistically insignificant effects at the 90% confidence level. Both histograms show that
in the vast majority of zip codes, HTF negatively affect the number of visits per POI. Specifically,
in the green zip codes, 85% of coefficients are negative while in the blue zip codes, 97% of them are
negative, which suggests that a large fraction of the positive impact estimates are not statistically
significant. As such, the median point estimate is much larger (in magnitude) for the blue histogram
at 8% reduction, which is similar to the estimate in Table 4.1 column (1).

To validate the NOAA inundation map, we first identify all zip codes in coastal states that have
any overlap with the NOAA inundation map (3,381). Then we compare this with zip codes that have
experienced negative mobility impact from the HTF. We find that the number of visits per POI in
78% of zip codes (out of 3,381) has been negatively affected by HTF, which indicates that NOAA
inundation map in general successfully predict the areas negatively affected by HTF. When we limit
our attention to zip codes with statistically significant negative effect, the ratio is 41%, which could
be driven by the fact that an average zip code has only 3% of its area overlapping with the NOAA
inundation area.
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In Appendix Figure B.2, we visually compare the NOAA versus Safegraph based inundation maps
(zip codes in the green histogram) for Florida and New York, examples of states most heavily af-
fected by HTF. We depict zip codes that overlap with both NOAA and Safegraph based inundation
maps in blue and overlap with only NOAA map in red. These maps provide additional validation for
the NOAA inundation map.
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Figure B.2: Map of Inundated Zip Codes. These maps depict coastal zip codes in Florida and New York. Blue
color indicates zip codes that have an overlap with the NOAA inundation map and Safegraph based inun-
dation map while red color indicates zip codes that have an overlap only with the NOAA inundation map.
Safegraph based inundation map include all zip codes with negative zip code specific estimate on the impact of
HTF on the logged number of visits per POI.
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C Additional Tables and Figures

Table C.1: Percentage of Raw Visit Counts by NAICS Codes

Sector Title NAICS Code Pct. of Visit Counts Pct. of POIs

Accommodation and Food Services 72 25.68 23.54
Retail Trade 44 16.19 17.35
Arts, Entertainment, and Recreation 71 14.46 7.63
Real Estate Rental and Leasing 53 11.61 2.46
Retail Trade 45 9.72 5.99

Health Care and Social Assistance 62 6.84 14.68
Educational Services 61 5.82 3.38
Other Services (except Public Administration) 81 4.48 15.21
Transportation 48 1.49 0.63
Finance and Insurance 52 0.62 2.91

Public Administration 92 0.47 0.69
Information 51 0.38 0.75
Professional, Scientific, and Technical Services 54 0.37 1.22
Construction 23 0.35 0.82
Manufacturing 31 0.27 0.65

Wholesale Trade 42 0.25 0.55
Manufacturing 32 0.23 0.50
Manufacturing 33 0.21 0.29
Warehousing 49 0.21 0.30
Administrative and Support and Waste Services 56 0.16 0.27

Management of Companies and Enterprises 55 0.15 0.13
Utilities 22 0.04 0.06
Agriculture, Forestry, Fishing and Hunting 11 0.00 0.01
Mining 21 0.00 0.00

Note:
This table presents the percentage of raw visits and POI counts by NAICS industry codes in our
sample.

Back to Section 3.2.
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Table C.2: Effect of High-Tide Flooding on Log Normalized Visits

(1) (2) (3) (4) (5)

HTF Event -0.094*** -0.094*** -0.092*** -0.091*** -0.091***
(0.007) (0.007) (0.007) (0.008) (0.008)

Cutoffs All 20 Visits 30 Visits 40 Visits 50 Visits
Observations 3,054,951 3,006,738 2,628,339 2,077,542 1,409,865

Note:
This table presents the effect of HTF on normalized visits based on
equation (2) for zip codes overlapping with the NOAA inundation
map. Each column represents a separate regression with different cut-
offs on average weekly visits. All outcome variables are in log scale
and baseline controls are included in all columns. Standard errors are
clustered at the county level. ∗p < 0.1; ∗∗p < 0.05; ∗∗∗p < 0.01.

Back to Section 4.
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Table C.3: Effect of High-Tide Flooding on Log Rental Rates (Without Baseline Controls)

(1) (2) (3) (4) (5)

N Days with HTF -0.0021*** -0.0016*** -0.0009** -0.0020*** -0.0018**
(0.0004) (0.0004) (0.0004) (0.0007) (0.0007)

N Days with HTF x High Disruption -0.0023***
(0.0006)

N Days with HTF x Low Happening -0.0003
(0.0008)

N Days with HTF x Low Worried -0.0006
(0.0008)

Fixed-Effects: ———- ———- ———- ———- ———
Zip Code Yes Yes Yes Yes Yes
Month Yes Yes Yes Yes Yes
Year-County Yes No Yes Yes Yes
Distance to Coast Yes Yes Yes Yes Yes
County No Yes No No No
Varying Slopes: ———- ———- ———- ———- ———
Year (County) No Yes No No No

Observations 184,416 184,416 184,416 184,416 184,416

Note:
This table presents the effect of HTF on rents based on equation (4) for zip codes overlapping with
the NOAA inundation map. All outcome variables are in log scale and baseline controls excluded in
all columns. Standard errors are clustered at the county level. ∗p < 0.1; ∗∗p < 0.05; ∗∗∗p < 0.01.

Back to Section 5.
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Figure C.1: Location of NOAA Gauge Stations and Change in the Annual Number of Days with HTF between
2001 and 2022. This figure depicts 84 NOAA gauge stations within the contiguous US that has flood thresh-
olds from Sweet et al. (2018). The color illustrates the change in the number of days with HTF between 2001
and 2022 for each site

Back to Section 3.1.
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Figure C.2: Number of days with HTF for Three Different Cities. These figures show the number of days with
HTF for Boston, NYC, and San Francisco over 2001-2022.

Back to Section 3.1.
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Figure C.3: The effects of HTF on the number of daily visits to selected zip codes across subcategories in
other services. These plots show the HTF impact on the number of visits during 7 days before and after the
HTF event. We control for the effects of larger and moderate flood events, precipitation, the fraction of pop-
ulation with college degree, the fraction of minority populations, median income, the fraction of rental units,
county by year fixed effects, and zip code by day-of-week-of-month fixed effects. See text for more details.

Back to Section 4.
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Figure C.4: The Effect of HTF on Rent by Specification. This plot compares the impact of HTF on rental
rates for linear and binned regression specifications.

Back to Section 5.
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(a) 1- and 2-day PDD Flood
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(b) 3- and 4-day PDD Flood

−0.2

−0.1

0.0

−7 −6 −5 −4 −3 −2 −1 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14
Days Since PDD (Incident Window 5−6 Days)

C
ha

ng
e 

in
 N

or
m

al
iz

ed
 V

is
its

(c) 5- and 6-day PDD Flood
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(d) 7+ day PDD Flood

Figure C.5: The effects of PDD flood on the number of daily visits to selected zip codes across subcategories
in other services. These plots show the HTF impact on the number of visits during 7 days before and 14 days
after the HTF event. We control for the effects of larger and moderate flood events, precipitation, the frac-
tion of population with college degree, the fraction of minority populations, median income, the fraction of
rental units, county by year fixed effects, and zip code by day-of-week-of-month fixed effects. See text for more
details.
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