Adapting to Natural Disasters through Better Information:
Evidence from the Home Seller Disclosure Requirement

Seunghoon Lee*

2024-06-2/

Abstract

While flood damage is determined by both flood intensity and population exposure, the US has pre-
dominantly focused on managing the former, with limited success. This paper studies whether a Home
Seller Disclosure Requirement can reduce flood exposure and thus flood damage. Leveraging two
quasi-experimental variations of the policy, I first show that mandating flood risk disclosure lowers the
population living in high-risk areas. Further, using a hydrological measure of flood intensity, I find
that the policy reduces the probability of flood damage by 31 percent. These findings illustrate that

easing information frictions can promote voluntary adaptation to natural disasters.
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1 Introduction

Since 1980, floods in the United States have wrought over $1 trillion in damage, making them the
costliest type of natural disaster over the last 40 years (NOAA 2020). Climate scientists predict
flooding is likely to happen with higher frequency and intensity in the future (Milly et al. 2002,
Ghanbari et al. 2019). Thus, effective adaptation, which is an activity to moderate or avoid harm, is
increasingly important (IPCC 2014).

While flood damage is determined by both flood intensity (i.e., physical characteristics) and expo-
sure (i.e., population size in high-risk areas), flood policy in the US has focused primarily on man-
aging the former by adding engineering structures (Changnon et al. 2000, Field et al. 2012, Tarlock
2012, Liao 2014). Unfortunately, such structural approaches, which are not failproof, can inadver-
tently exacerbate the problem by attracting more people and developments to floodplains (the so-
called “levee effect”) (Pinter 2005, Kousky et al. 2006, Collenteur et al. 2015).! Consequently, gov-
ernments end up spending billions of dollars for disaster relief and recovery on top of the resources
devoted to flood prevention (CBO 2016). Given these limitations, disclosure policies that aim to
reduce flood exposure by affecting location choices are getting more attention, but little is known
about such a policy’s effect and mechanisms.”

This paper exploits quasi-experimental variations from a Home Seller Disclosure Requirement
(hereafter “the disclosure requirement”) to study whether easing information frictions about flood
risk can reduce (1) the number of households in high-risk areas and (2) resulting flood damage.
Although official flood maps have long been publicly available, earlier research and anecdotal
evidence suggest a lack of flood risk awareness among homebuyers. For instance, Chivers and Flores
(2002) find only 14 percent of homebuyers in high-risk areas learned about flood risk before closing.
Such low awareness makes it unlikely that homebuyers fully internalize the costs of flood risk during
real estate transactions. Given that a potential reason for the friction is information acquisition
and processing costs (Kunreuther and Pauly 2004), the disclosure requirement could alleviate the

problem by efficiently delivering risk information.

'Flood prevention structures frequently fail as evidenced by the 1993 Midwest Flood where over 1,000 levees failed
(LARSON 1996). A major contributing factor to these failures is the lack of maintenance, with only 1.9% of US levees
rated as “Acceptable” (Pinter et al. 2016)

2For instance, FEMA has recently proposed an National Flood Insurance Program (NFIP) reform tying a commu-
nity’s flood insurance eligibility to mandatory flood risk disclosure before real estate transactions (U.S. Department of
Homeland Security 2022).



The policy mandates that home sellers must disclose known property issues on various dimensions
including the structure and ambient environments using a standardized form (Lefcoe 2004). Regard-
ing flood risk, a typical question is if a property is located in a Special Flood Hazard Area (SFHA)—
an area with elevated risk defined by the official flood map. Home sellers are generally obliged to ful-
fill the disclosure requirement before closing (Stern 2005).

The disclosure requirement was rolled out across 26 states in the contiguous US from 1992-2003.
The variation in implementation timing is from plausibly exogenous state court rulings on the ex-
tent of realtor liability for incomplete disclosure (Roberts 2006), which facilitates a difference-in-
differences research design. In exploiting this variation, I use the stacked approach to overcome po-
tential bias from conventional two-way fixed effect models (Cengiz et al. 2019, Brot-Goldberg et al.
2020, Goodman-Bacon 2021).

I also leverage additional variation stemming from the spatial discontinuity in flood risk informa-
tion at the flood zone border. That is, homebuyers for two proximate properties located on oppo-
site sides of an SFHA border—over which flood risk is changing continuously—receive starkly dif-
ferent flood risk information, which yields an opportunity to identify the information effect holding
true flood risk constant (Noonan et al. 2022). A potential concern is that being located in the SFHA
could invite other treatments such as the mandatory purchase of flood insurance. Thus, I use the
difference-in-discontinuity approach to control for time-invariant confounders (Grembi et al. 2016).

I collect multiple datasets to leverage these variations. To explore homebuyer responses to the
disclosure requirement, I use census-block-level demographic data from the decennial census. To
measure flood damage, I use damage records from flood insurance adjuster reports. I also construct
community-level flood history data using a hydrological measure (Saharia et al. 2017, England Jr et
al. 2019), which overcomes the potential endogeneity of widely used self-reported flood events (Gall
et al. 2009). Because the main outcome variables used in the analysis have a mass point at zero with
a long right tail, I estimate the extensive and intensive margin effects separately following sugges-
tions of Chen and Roth (2022).

The empirical exercise produces two key results. First, by leveraging the spatial discontinuity, I
find that census blocks in an SFHA area (provided having a non-zero population) experience a 7 per-
cent decline in population after the disclosure policy. At the extensive margin, disclosure lowers the

probability of a block in the SFHA having any population by 0.01, or 1.5 percent from the baseline



value of 0.67. I further show that these effects are driven by diverted in-migration (and resulting sup-
pressed development) rather than active out-migration from SFHA areas. Taken together, these ef-
fects indicate that the disclosure requirement significantly reduces exposure to flood risk.

In the subsequent section, I directly test whether this lower exposure contributes to a reduction in
flood damage. To show this, I first estimate a non-parametric flood damage function—a mapping be-
tween flood size and damage—using community-level flood intensity and damage data. Then, I esti-
mate the causal effect of the disclosure requirement on the damage function and find that the policy
reduces the annualized probability of having any flood damage at the community level by 2.3 per-
centage points (or 31 percent of the baseline mean). Additionally, I report that the damage reduction
effect is three times larger in high-risk communities, which are subject to higher treatment inten-
sities. Importantly, neither population nor damage reduction effects are observed in the “placebo”
states, which had implemented a home seller disclosure requirement but without a question on flood

risk.

This paper contributes to four different bodies of literature. First, it is related to prior studies on
factors that mitigate damage from climate change. While earlier studies primarily focus on technol-
ogy as a driver of adaptation (Miao and Popp 2014, Barreca et al. 2016, Burke and Emerick 2016), I
focus on the role information can play in aligning private incentives with socially desirable outcomes.
A recent paper by Fairweather et al. (2023), which experimentally demonstrates that Redfin users
are more likely to make offers on properties with lower flood risk when provided with flood risk in-
formation, is an important exception. I complement Fairweather et al. (2023) with (1) the ability to
estimate changes in flood damage from information provision and (2) a stronger external validity.

Second, I contribute to the literature on the role of government in shaping household adaptation
behaviors (Kousky et al. 2006, 2018, Gregory 2017, Peralta and Scott 2020, Baylis and Boomhower
2022). Perhaps the closest papers conceptually are Baylis and Boomhower (2021) and Ostriker and
Russo (2023), which show how building-code policies can reduce wildfire damage or flood risk ex-
posure, respectively. A key difference is that the policies studied by these papers directly mandate
adaptation, whereas disclosure policies studied in this paper encourage voluntary adaptation such as
choosing safer places to live.

Third, and more broadly, I build on earlier work on the impacts of flood risk on the housing mar-



ket (Hallstrom and Smith 2005, Pope 2008, Bin and Landry 2013, Bosker et al. 2019, Muller and
Hopkins 2019, Gibson and Mullins 2020, Hino and Burke 2021, Bakkensen and Barrage 2021). While
most prior studies focus on understanding how changes to flood risk information or beliefs affect
housing prices, I study their impacts on flood damage.® Tracing the effect of flood information up to
the damage amount is important because while housing price changes might reflect transfers between
homebuyers and sellers, a reduction in flood damage enhances social welfare.

Finally, I contribute methodologically by constructing a novel measure of flood exposure, which
is a critical step in identifying climate change effects (Hsiang 2016). My approach leverages hydro-
logical measures, which allow me to objectively document flood events for various causes including
rainfall, snow melt, or storm surge. This extends the existing measures that are either endogenous or
limited in scope (Strobl 2011, Felbermayr and Groschl 2014, Davenport et al. 2021).

The paper proceeds as follows. Section 2 provides background on the Home Seller Disclosure Re-
quirement and the Special Flood Hazard Area. Section 3 details the data sources and provides some
summary statistics. Section 4 presents estimation results on household responses while Section 5

shows the disclosure policy effect on flood damage. Section 6 concludes.

2 Background

Disclosure content. A statutory disclosure requirement mandates that home sellers provide buyers
with a detailed account of known material defects in the listed property by filling out a standard-
ized form. Importantly, the disclosure requirement is not exclusively about flood risk. As Appendix
Figure D.2 illustrates, a typical form covers a wide range of property conditions including structural
issues (e.g., problems with walls) and surroundings (e.g., natural hazards such as flood risk).* This
implies that the policy adoption decision is likely to be uncorrelated with underlying flood risks. In-
deed, Appendix Figures D.1 (a)-(c) show little relationship between the timing of disclosure require-

ment and recent flood history or ex-ante flood risk levels.

3For example, Hino and Burke (2021) uses flood map updates as the main source of information shock and tests if
the housing market efficiently prices flood risk. While they focus on the price effect, I study household responses to the
information shock—which provide an explanation for price adjustments—and resulting change in flood damage.

4Since the disclosure delivers a bundle of information, discerning treatment mechanism can be challenging espe-
cially when there is a positive correlation between flood risk and other property defects. In Appendix Table D.1, I
demonstrate that properties in tracts with SFHAs are notably newer compared to those in tracts without SFHAs. As
property defects typically emerge over time, this table suggests that SFHA properties are less prone to issues, implying
that the disclosure policy’s impact on flood-related outcomes stems from flood risk information.
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Figure 2.1: The Disclosure Requirement Implementation over Time

The exact language of disclosure on flood risk varies slightly from state to state, but some combi-
nation of the following three questions usually appears: whether a property is in the SFHA; whether
a property has flood damage history; and whether a property has flood insurance.” Because proper-
ties on the SFHA are more susceptible to flooding, answers to these questions are highly correlated.
Indeed, flood insurance policy and claims data show that 71 percent (75 percent) of the claims (flood
insurance policies) are from properties in the SFHA. Thus, irrespective of the language, the disclo-
sure requirement is likely to raise homebuyers’ flood risk awareness for properties in SFHAs relative

to those outside.

Background and determinants of policy adoption. Traditionally, homebuyers were expected to prac-
tice caution regarding property defects (“caveat emptor” or “let the buyer beware” doctrine). How-
ever, due to increasing consumer protectionism and public awareness of environmental and health
concerns, state courts began holding listing agents accountable for incomplete disclosures (Wein-
berger 1996, Lefcoe 2004). In response, the National Association of Realtors issued a resolution in
1991 urging state associations to develop and support legislation regarding the statutory disclosure
requirement in an effort to deflect potential liability to sellers (Tyszka 1995, Washburn 1995).

Consequently, between 1992 and 2003, 26 states in the contiguous US adopted a disclosure require-

5As of 2021, 5 states ask just the first question about the SFHA status, 15 states ask about SFHA status and past
flood experience, and 4 states ask all three questions. MI and TN ask about the latter two only.



ment with an explicit question on flood risk while the remaining 22 states never adopted such a re-
quirement (Figure 2.1). In Appendix Table D.2, I show that (1) the 22 never-adopted states are dif-
ferent in demographic, economic, and political characteristics from the 26 ever-adopted states but
(2) such a difference does not appear in the early—14 states that have implemented the policy by
1994—vs. late—12 states implemented after 1994—adopting states comparison. Given these observa-
tions, I use late adopting states as a control group in subsequent empirical exercises.’

It is also worth pointing out that five of the 22 non-disclosure states adopted a home seller disclo-

sure mandate without a question on flood risk.” These “placebo” states are useful for checking the

robustness of the main results.

Flood Map and Special Flood Hazard Area (SFHA). The SFHA, an area designated by an official
flood map for potential inundation by a 100-year flood, holds significant importance as it frequently
serves as a reference point for flood risk communications (FEMA 2011). The SFHA boundary is
determined by comparing water surface elevation with the ground elevation under a 100-year flood
scenario (FEMA 2005). Thus, flood risk, which is a function of land contour, is continuously chang-
ing even at the SFHA border (Noonan et al. 2022). This gives rise to the spatial discontinuity de-
sign because the disclosure form treats flood risk discontinuously for two areas on different sides of
the border with possibly very similar true flood risks. It is also worth noting that the flood maps
are updated occasionally, albeit much less frequently than legally mandated (DHS Office of Inspec-
tor General 2017). Such a map update is a source of information shock (Gibson and Mullins 2020,
Bakkensen and Ma 2020, Weill 2021, Hino and Burke 2021), which may confound the disclosure ef-

fect. Throughout empirical exercises, I test if my results are robust to the map updates.®

5Deshpande and Li (2019) also exploit the timing of treatment because eventual treatment status was predictable
based on covariates. Roth and Sant’Anna (2023) also states that in non-experimental contexts, the quasi-randomness in
identifying variation may be more plausible when never-treated units are excluded.

"For details, see 1994 Ida. 55-2508 (1994), K.S.A. 58-30, 106 (1995), ME Title 33 Section 173 (1999), MN CHAP-
TER 306-—S.F.No. 2697 (2003), NH. Rev. Stat. Ann. § 477:4-c (1994).

8293 communities in the 26 disclosure states have experienced at least one update within the 20 years around the
change year of the disclosure policy. To generate the list, I use the “L_ Comm_ Revis” layer from the National Flood
Hazard Layer from FEMA (FEMA 2019).



3 Data

Demography. 1 collect census-block-level population and occupancy data from the 1990, 2000, 2010,
and 2020 decennial censuses. To account for changing block boundaries and resulting one-to-many
matches across different decennial census years,” I calculate the weighted sum of count variables us-
ing interpolation weights from the NHGIS block-to-block crosswalk (Manson et al. 2022).' This cre-

ates a geographically standardized panel data.

Flood damage. 1 use damage records from the flood insurance adjuster’s report, which I acquired
through Freedom of Information Act requests. The damage amount is defined by the actual cash
value—a replacement value net of depreciation (FEMA 2014). T observe individual property level
damage with loss date, community ID, and building type. I restrict the sample to damage records
from single-family houses that has sustained the largest flood event for a given community-year.

Then I collapse the data to the community by year level to merge it with the flood history data.

Flood history. Climate exposure is a crucial independent variable in climate damage functions. In
the domain of floods, two different approaches have been widely used but they are either endogenous
or limited in scope. To overcome these limitations, I construct hydrology-based community-year-level
flood size data using daily water volume records from over 3,000 USGS and NOAA stations (Milly et
al. 2002, Mallakpour and Villarini 2015, Slater and Villarini 2016). Under this approach, flood size
is described by the recurrence interval or the expected number of years for a flood of the same mag-
nitude to come back (Task Committee on Hydrology Handbook of Management Group D of ASCE
1996), which, heuristically, can be considered as deviations from gauge specific averages. Details on

background, procedure, and summary statistics on the flood data are in Appendix A.

Other data sources. To determine the flood risk level of geographic units such as census blocks,
I use the Q3 map—the first generation of a digitized flood map—that captures flood risk as of the
mid-1990s for over 1,300 counties (FEMA 1996). Also, the primary data source to track the dis-

closure requirement legislative history is the Nexisuni database. I cross-validate this database with

9For instance, block G06000104003003006 in 2000 is matched to five different blocks in 2010 ending in 3010, 3011,
3017, 3020, and 3028.

YTnterpolation weights represent the expected proportion of the source block’s counts (e.g., population or housing
units) located in each target block (Manson et al. 2022)



prior studies on the disclosure requirement (Washburn 1995, Pancak et al. 1996, Lefcoe 2004) and

reports from the National Association of Realtors (National Association of Realtors 2019).

Descriptive statistics. Appendix Table A.3 shows summary statistics for the key independent vari-
able: flood size; and dependent variables: population and flood damage per housing unit. Population
figures are for the census blocks within the optimal bandwidth (more detail in Section 4). The other
two values are for the NFIP communities in my sample.

A notable aspect of the data is the high prevalence of zeros among the dependent variables. For
instance, 27 percent of observations for the block population and 95 percent of the observations of
community-level flood damage per housing unit are zero. The high prevalence of zeroes for these
variables is consistent with external sources (see Appendix A.2).

In addition, these variables also exhibit substantial skewness (long and thin right tails), as the
difference between median and mean values suggests. To account for this, I follow Chen and Roth
(2022) and estimate extensive and intensive margin effects separately for each dependent variable.
This approach resonates with a hurdle or two-part model, which is used extensively in modeling
health expenditures that are characterized by a similar distribution (Mullahy and Norton 2022). The
last row of Appendix Table A.3 indicates that an average community experiences 2.18 10-year flood
events over a 20-year period. This is close to the expected value of 2.0.

Finally, it is also useful to highlight that as Appendix Figure D.4 illustrates, the area covered by
the SFHA is relatively small for a typical jurisdiction, which makes it unlikely that non-SFHA areas
will be seriously “contaminated” by the disclosure requirement (Busso et al. 2013, Alves et al. 2024).
However, there is a substantial variation in the SFHA fraction (i.e., treatment intensity), which is

useful for identification.

4 The Effect of the Disclosure Requirement on Population

In this section, I investigate how homebuyers respond to flood risk information by estimating the

impact of the disclosure policy on net population flow.



4.1 Estimation Framework

Yes-or-no check box questions on disclosure forms create a spatial discontinuity in flood risk infor-
mation, which allows me to disentangle the information effect from the true flood risk effect. How-
ever, a potential concern is that other policies such as flood insurance requirements also change at
the border, which could confound the disclosure effect. To account for this, I leverage a difference-in-

discontinuity approach as equation (1) following Grembi et al. (2016).'!

Yost =00 + 01 Xps + 02Dps + 03 Xps * Dps+ O
Tst[64 + 65 Xps + 06 Dps + 07 Xps * Dps| + €bst

Y3st is an outcome variable such as the probability of having any population, log of population con-
ditional on having non-zero population, or the vacancy rate in block b in state s in time ¢.'? X, is
the distance between a block border and the closest SFHA border in meters (negative if in a non-
SFHA area),'13 Dyps = 11if X > 0 is a treatment group indicator variable, and Ty = 1if ¢t > T
is a post-period indicator variable, where T is the policy change date for s. Js captures the impact
of the disclosure policy for blocks located in close proximity to the SFHA border. To estimate dg, I
first estimate the optimal bandwidth for each outcome variable. Then, I estimate equation (1) using
blocks within the optimal bandwidth (Calonico et al. 2014, Cattaneo et al. 2019).'* For states that
have implemented disclosure policies between 1990-1999 (2000-2009), I use the 1990, 2000, and 2010
(2000, 2010, and 2020) decennial census. Throughout the analysis in Section 4, standard errors are
clustered at the state level, which corresponds to the level of disclosure treatment. Also, I remove 17
percent of blocks that contain SFHA borders from the analysis because the distance from a block to

an SFHA border may not be well defined.

"¥While Noonan et al. (2022) shows that flood risk changes continuously at the border in Texas, it is possible that
land contour changes rather abruptly for other states in my sample. However, because land contour is time invariant
(at least during a relatively short period), such differences will also be controlled by the difference-in-discontinuity
approach.

12 A property is considered vacant if no one is residing in the unit at the time of enumeration unless its occupants are
only temporarily absent (US Census Bureau 2000).

13X, is approximated by taking the difference of (1) the distance between block centroids and the closest SFHA
border and (2) a block diameter.

11 estimate the mean squared error optimal bandwidth for 2000 and 2010 and take the average of them following
Grembi et al. (2016). I ignore 1990 and 2020 because these years have only a subset of the states in the sample.



4.2 Findings

Figure 4.1 (a) illustrates the impact of disclosure policy on the population. The horizontal axis is
the distance between a block and the nearest SFHA border. The blocks within (outside of) an SFHA
are presented on the right-hand (left-hand) side of the border (the vertical line at 0). The solid lines
represent the regression fit from equation (1) and the change in the logged population between the
pre and post disclosure periods for the non-SFHA blocks is normalized to 0. I also overlay a scatter-
plot, which shows the difference in log population between pre and post treatment periods for each
distance bin.

The figure indicates there is a sharp drop—approximately 0.07 log points—in the population for
SFHA blocks relative to non-SFHA blocks at the SFHA boundary after the disclosure requirement.
Note, the regression line fits the scatter plot tightly, which suggests that the choice of functional
form for the running variable is unlikely to have a substantial impact on the estimates. Importantly,
no such population change is observed in Figure 4.1 (b), which presents the impact of a home seller
disclosure requirement that does not have a question on flood risk.

Table 4.1 reports the disclosure policy effects more formally. In column (1), which corresponds to
Figure 4.1 (a), I limit the sample to blocks with non-zero population and find that the disclosure re-
duces the population in SFHA blocks by 7 percent relative to non-SFHA blocks. In column (2), I
report the extensive margin effect without imposing limits based on the dependent variable value. I
find that the disclosure reduces the probability of having any population in an SFHA block by 0.01
relative to a non-SFHA block (or 1.5 percent of the baseline value of 0.68). Taking these extensive
and intensive margin effects together, the policy seems to discourage both in-migration into SFHA
blocks with existing populations and new developments in previously uninhabited SFHA blocks.

In column (3), I report that the disclosure increases the vacancy rate for the blocks in an SFHA
from 0.095 to 0.109. This finding suggests that after the disclosure, selling properties in the SFHA
becomes harder (or takes longer) and a larger share of them are vacant at any given time.'® These
findings are consistent with evidence that people migrate away from negative environmental condi-

tions (Banzhaf and Walsh 2008, Boustan et al. 2012, Hornbeck 2012, Hornbeck and Naidu 2014).

15Indeed, New Orleans, one of the highest flood-risk areas in the nation, has the highest vacancy rate among the 75
largest MSAs in the US (Fudge and Wellburn 2014).

10
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Figure 4.1: The Effect of Disclosure on Population. These figures illustrate difference-in-discontinuity esti-
mates for the log of block population for the (a) disclosed and (b) placebo states. The discontinuity at the
threshold (dashed vertical line) corresponds to the dg term in equation (1). The dependent variable is the

change in log of population after the disclosure. The running variable is defined by the distance between a
census block and the nearest SFHA border.

Table 4.1: Effect of Discosure Requirement on Net Population Flow

Log Prob. of Any Vacancy

Population Population Rate

M @) )
SFHA x Post —.074** —.011*** .014***
(.030) (.003) (.004)

Avg D.V. 0.675 0.095

Bandwidth 301 138 262
Num. obs. 1915717 1483356 1700002

Note: Columns (1)—(3) are estimated based on equation (1) using the de-
cennial census block-level data in 1990, 2000, 2010, and 2020. Standard
errors are clustered at the state level. *p < 0.1; **p < 0.05; ***p < 0.01.

In Appendix Figure D.7, I show the log of population change in event time.'® For this exercise, I
limit my sample to blocks that appear in at least four decennial censuses. A practical implication is
that I lose 80% of observations because the 1980 decennial census collects data for areas that were
considered “urban” or belonged to a metropolitan area. Although underpowered, the event study
figure suggests that there is no pre-trend in the log of population before the disclosure requirement
but SFHA areas experience a 3-4% drop in population after the policy change.

To investigate the mechanism behind population adjustments, in Appendix Figure D.8, I sepa-

5Event time is defined as -2 (-1) for 19 to 10 (9 to 1) years before the policy change and 0 (1) for 0 to 9 (10 to 19)
years after the policy change.
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rately plot the log of the average population and housing units by the SFHA status in event time.
Panel (a) illustrates that the log of the population in the two groups is on the same trend before the
disclosure (i.e., between event time —2 and —1), which is consistent with no pre-trend from Appendix
Figure D.7. But the two lines diverge in event time 0, and the relative population of SFHA blocks
after the disclosure seems to decrease due in large part to an increasing population of non-SFHA
blocks (blue dotted lines) rather than a shrinking population of SFHA blocks (red solid lines), es-
pecially between event time 0 and 1. Similarly, in panel (b), I find a rapid expansion of housing units
in non-SFHA blocks (blue dotted lines) and a stagnation for SFHA blocks (red solid lines). These
empirical patterns suggest that the population adjustments reflect diverted in-migration (and result-
ing suppressed development) rather than active out-migration from SFHA areas, which is plausible
given that the disclosure requirement provides new information to homebuyers rather than to home-
sellers or existing homeowners.

Two potential concerns regarding internal validity—strategic sorting of households at the border
and concurrent policy changes—merit attention. In Appendix C, I show that my main results survive

a battery of robustness checks such as allowing for time varying discontinuities at the border.

Given that purchasing insurance is a potential alternative to self-protection, namely choosing a
safer location (Ehrlich and Becker 1972), in Appendix B, I investigate the disclosure policy’s im-
pact on flood insurance take up.!” The results suggest that homebuyers primarily respond to the
flood risk information by choosing a safer location to live, which indicates that the disclosure re-
quirement has the potential to substantially reduce flood damage. But why do homebuyers engage in
self-protection despite the option to buy flood insurance? One possibility is that the cost of location
adjustment is substantially lower for homebuyers especially compared to households not intending
to move. Indeed, Zumpano et al. (2003) documents that homebuyers actively search across alterna-
tives, and an average buyer visits 17 properties before closing. Moreover, the NFIP coverage may be

deemed incomplete: while it covers asset losses up to $250,000, which may not fully protect the value

"Investigating both margins is important because they have starkly different implications for flood damage—self
protection can reduce flood risk exposure whereas buying insurance simply redistribute income from “dry” to “flood”
state without necessarily affecting exposure. Ehrlich and Becker (1972) suggests that, when self-protection is financially
rewarded, self-protection and market insurance are complements. However, as Kousky (2019) points out, the NFIP pre-
mium is heavily subsidized and the NFIP premium structure is too coarse to account for all self-protection measures.
Wagner (2022) also finds that substitution between self-protection (property elevation) and flood insurance is prevalent
in the flood insurance market.

12



of many properties, it does not compensate for numerous economic costs such as loss of income or

use value that are beyond asset losses (Lee et al. 2023).

5 The Effect of the Disclosure Requirement on Flood Damage

5.1 Estimation Framework

Conditional on flood size, how does flood damage change after the disclosure requirement? To an-
swer this question, I estimate a damage function, which is a mapping between flood size and damage,
and show how the functional relationship changes due to the policy. Damage functions have been
widely used in the economics literature to understand the relationship between heat and economic
outcomes.'® Surprisingly, there has been limited attention directed toward damage functions specific
to floods, despite the substantial destruction they cause. This is partly because objective measure-
ment of flood size is difficult. I overcome this challenge by constructing a hydrology-based flood his-

tory dataset described in detail in Appendix A.

Per Housing Unit Damage = Z[a’ka +abF*D] (2)
k

Before describing the estimation procedure, it is useful to conceptualize the damage function. Con-
sider equation (2), where the dependent variable is flood damage per housing unit, D is an indicator
variable for the treated (i.e., disclosed) group assignment and F* is an indicator variable equal to 1
when the annual maximum flood size is in bin k& where k € {2-10, 10-20, 20-30, 30-40, 40-50}.

There are three points to discuss regarding F* in damage function specification. First, I use the
annual maximum flood size as a proxy for flood exposure for a given community-year. While this
means smaller floods in the same community and year are ignored, this is unlikely to be a practical
concern because the majority of the community-years in the dataset had just one flood, especially for
floods of size over 10 or larger, which cause disproportionately large damage (Appendix Figure A.3
(c) and (d)).

Second, I focus on flood sizes between 1 and 50 because larger floods are frequently accompanied

by interrelated perils, which cause substantial measurement errors (Kron et al. 2012). Further, as

8For a review, see Dell et al. (2014), Carleton and Hsiang (2016), and Auffhammer (2018).
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shown in Appendix Figure A.3 (b), the frequency of flood events reduces exponentially as flood size
increases, making it difficult to non-parametrically identify statistical relationships for very large
floods. Appendix Table A.2 shows that the threshold for flood sizes 10 and 50 are closely matched to
the threshold for “moderate” and “major” floods defined by the National Weather Service, indicating
that the chosen flood sizes cover a wide enough band to capture floods of different severity.

Third, the assumption behind binning is that the damage per housing unit is identical within each
k. While flood sizes of 41 and 49, for example, might have a different effect in reality, I choose a bin
size of 10 to strike a balance between flexibility and precision (Barreca et al. 2016).

Here, flood sizes between 1-2 serve as the baseline omitted category, and thus o/f is the additional
damage per housing unit when a community in the control group experiences a flood of size k as op-
posed to a flood size between 1-2. of allows a different damage function slope for the treated group
for flood size k. Note, equation (2) follows a non-parametric approach of Barreca et al. (2016), which
lets the data rather than the functional form assumption, determine the shape of the damage func-

tion.

Per Housing Unit Damage = Z[ﬁka + BYFFI + BYFFD + BYFFID] (3)
k

Equation (3), which mirrors a canonical difference-in-differences model, shows how equation (2)
changes when the post disclosure indicator [ is introduced. The coefficient for the interaction term

(%) captures the treatment effect.

Yinta = Y _BYEE 4 + BEFE aLnsa + BEFYgDinva + BEES iaTmtaDimta) + Oma + wia + €mea (4)
k

For estimation, I use equation (4). Y44 is either an indicator variable for positive flood damage
in community m (extensive margin), or log(Per Housing Unit Damage) conditional on having posi-
tive damage for community m (intensive margin), in year ¢ for data stack d. While I report both the
extensive and intensive margin effects, an emphasis is on the former due to greater generalizability—
only a small fraction of communities experience repeated damage—and higher statistical power.
Each stack d consists of communities in the treated states, which adopted the disclosure policy in

year t*, and communities in the control states, which adopted the policy in £ > ¢*.19 T drop observa-

19Stack refers to data that is created for a specific treatment year (or a cohort year). A state can belong to both

14



tions from the control states for ¢ >= t because they are no longer “not-yet-treated”. I also include
year X stack (wgg) and community x stack (6,,4) fixed effects, to control for overall time trend and
unobserved community characteristics. I use 20 years of observation for each state around the disclo-
sure policy change year (i.e., 10 years before and after the policy change) to keep the sample compo-
sition unchanged.
Because the impact of natural disasters is not confined by administrative units, previous studies

on cyclone damage function have used spatial-HAC standard errors (Hsiang 2010). Following this, I
allow spatial correlation of up to 500 miles for inference (Newey and West 1987, Conley 1999), but I

also show that state-level clustering produces similar results.?’

5.2 Findings

In Figure 5.1, I plot the damage functions for the (a) control—not-yet-disclosed—and (b)
treatment—disclosed—groups using the estimated coefficients from equation (4).?! For instance, BA{“
and BA{“ + ﬁ?’f for each k are used to plot the pre-treatment period damage functions for panel (a) and
(b), respectively. Because the dependent variable in Figure 5.1 is the probability of any damage, the
estimated coefficients indicate the additional probability of damage when the baseline flood (k=1-2)
is replaced by a flood of size k.

Figure 5.1 allows visual inspection of the validity of the estimated damage function. To begin, I
first focus on the slope of this function, which reveals a monotonically increasing relationship be-
tween flood size and the probability of any flood damage. In subsequent panels (¢)—(f), I test het-
erogeneity in the damage function for further assessment. That is, even when faced with floods of the
same size (as defined by community-specific recurrence intervals, which, heuristically, can be consid-
ered as deviations from local averages), communities with higher risk should exhibit higher levels of
damage.?? Indeed, I find that high risk communities in panels (c¢)-(d) (an above-median fraction of

the area covered by an SFHA) have much higher vertical levels and steeper slopes in comparison to

treatment or control groups depending on the stack. For instance, PA and CT, which changed their policy in 1996 are
in the “treatment group” in a stack for t* = 1996. The two states belong to the “control group” when t* < 1996.

20Weights in this matrix are uniform up to that cutoff distance. When the variance-covariance matrix is not
positive-semidefinite, I use eigendecomposition of the estimated variance matrix and convert any negative eigenvalue(s)
to zero following Cameron et al. (2011).

2! Appendix Figure D.9 reproduces Figure 5.1 with a 95 percent confidence interval.

22To illustrate this, consider two communities, A and B with starkly different risk profiles: A is entirely situated
within the SFHA while B lies outside the SFHA. In the event of a 100-year flood, the entire property in A would be
expected to be underwater (by the definition of SFHA), whereas B would remain unaffected.
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Figure 5.1: The Effect of Disclosure on the Damage Function. These plots illustrate estimated damage func-
tions (dep.var: probability of any damage) from equation (4). Panels (a)—(b) are damage functions for all
communities. Panels (¢)—(d) and (e)—(f) illustrate the damage functions for high (above-median SFHA ratio)
and low (below—median SFHA ratio) flood risk communities, respectively. Appendix Figure D.9 reproduces
Figure 5.1 with 95% confidence intervals.
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the low risk communities in panels (e)—(f).

Table 5.1 highlights the impact of the disclosure requirement on flood damage. For brevity, I only
report ,éff from equation (4), but the full sets of coefficients are in Appendix Table D.3. In column
(1), I report the policy effect using all communities in my sample. The results show that the disclo-
sure requirement reduces the probability of having any flood damage per housing unit by 4-20 per-
centage points for different values of k£ for the communities in the disclosed states relative to the ones
in the not-yet-disclosed states.”> The damage reduction effect can be verified visually as well: Figure
5.1 shows that in panel (a) (control), flood probability has substantially increased over time, whereas
in panel (b) (treated), it remains nearly identical.

Using equation (5), I summarize the coefficients in Table 5.1 into probability-weighted average
treatment effects. Note, because Pr(K = k) is the likelihood of occurrence for flood size k each year
and @’f is the change in probability of having damage from flood size k, equation (5) can be inter-

preted as the reduction in annualized damage probability due to the disclosure policy.?*

> Pr(K =k)x g} (5)
k

In Table 5.1 column (1), I report that the reduction in the annualized damage probability is 2.3 per-
centage points. When I compare this with the baseline of 7.4—average probability of having any
damage conditional on exposure to a flood of size 2 or larger—the effect size is a 31 percent reduc-
tion.

In columns (2) and (3), the sample is divided into communities with SFHA coverage ratios above
and below the median to explore heterogeneous treatment effects. Because the disclosure policy in-
forms flood risk of properties in an SFHA, the policy effect should be driven by the high-SFHA com-
munities. Indeed, the reduction in the annualized damage probability is nearly three times larger for
high-SFHA communities than for low-SFHA communities.

Column (4) reports the intensive margin effect, where the dependent variable is the log of damage
per housing unit. Because the sample for this exercise is restricted to community-years with posi-

tive damage, the model is underpowered. Still, I find suggestive evidence that the disclosure policy

ZFor per housing unit damage, I divide community-year level damage using the housing stock in 1990.
#4Since the flood size is defined by recurrence interval, the inverse of the size corresponds to Pr(K = k). For in-
stance, the probability of having a flood of size 40-50 in a given year is — (45 is the median value of the bin).

45
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Table 5.1: Effect of Disclosure Requirement on Flood Damage

Prob. of Any Damage Log Damage
Per Housing Unit Per Housing Unit
M @ &) @
Post x Disclosure (Size 2-10) —.039* —.056* —.021 —.063
(.023) (.030) (.015) (.325)
Post x Disclosure (Size 10-20)  —.072* —.086* —.051* 189
(.039) (.050) (.029) (.189)
Post x Disclosure (Size 20-30) —.080*** —.131% —.018 .170
(.029) (.038) (.031) (.562)
Post x Disclosure (Size 30-40)  —.141* —.172** —.111 —.360
(.073) (.072) (.082) (.442)
Post x Disclosure (Size 40-50) —.197*** —.339%* —.054 —.425
(.055) (.061) (.068) (.540)
Annual Effect -0.023%F  _0.034*** -0.012 -0.012
(0.009) (0.011) (0.008) (0.063)
Sample All High SFHA Low SFHA Damage > 0
Year x Stack FE X X X X
Community x Stack FE X X X X
Num. obs. 505383 242458 262925 22100

Note: The dependent variable in columns (1) to (3) is the probability of having any flood damage per housing unit.
Column (1) is from the entire set of communities while in columns (2) and (3), I repeat (1) using the subsample of
communities with different levels of risk exposure. Dependent variables in columns (4) is log transformed per housing
unit damage. Spatial-HAC standard errors that allow spatial correlation of up to 500 miles are estimated for inference.
*p < 0.1; **p < 0.05; ***p < 0.01.

reduces damage for communities with repetitive flood events.

Appendix C.2 presents various results from robustness checks. Specifically, it includes an event
study graph that illustrates no pre-trends and a sharp reduction in damage probability following the
implementation of the disclosure requirement. Furthermore, using placebo states, I show that dis-
closure requirements without information on flood risk fail to reduce damage. Lastly, the results in
Table 5.1 are robust to flood map updates.

To explore the mechanism behind the damage reduction effect, first revisit Figure 5.1 (c¢) and (e).
These figures collectively show that, in the absence of a disclosure policy, flood damage has signifi-
cantly increased over time in high-risk communities compared to low-risk ones. In contrast, Figure
5.1 (d) reveals that high-risk communities in states with disclosure requirements did not experience
such an increase in damage, presumably because the policy effectively prevented an increase in flood
risk exposures by diverting in-migration, as discussed in Section 4.2. Notably, such a damage reduc-
tion effect is much smaller in (f), which is plausible given that (1) low risk communities inherently

have less risk-prone land and (2) treatment intensity is lower.
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While the estimated impact of a simple disclosure policy is non-trivial, this number is likely to un-
derestimate the true benefit because the analysis excludes flood sizes over 50, which incur dispropor-
tionately large damage. Besides, I abstract away from a potential gain due to a better matching in

flood risk preferences between properties and homebuyers (Bakkensen and Ma 2020).

6 Conclusion

Floods are the costliest natural disaster in the US and are expected to become more frequent and se-
vere in the future. Thus, curbing economic loss from these events is of first-order importance. The
primary policy prescription in the US for flood risk is engineering-based—i.e., using physical struc-
tures and other building-based responses to reduce damage. However, this approach can attract more
people to areas with flood risk by distorting location choices.

In this paper, I study whether alleviating information frictions regarding flood risk in the housing
market can be an effective way to foster adaptation. By exploiting plausibly exogenous variations
created by the disclosure requirements, I explore if and how home buyers respond to required flood-
risk disclosure and investigate its implications for flood damage. I find the disclosure requirement re-
duces the population and increases the vacancy rate in high-risk areas. With fewer people exposed to
flood risk, the annualized probability of flood damage decreases by 2.3 percentage points (or 31 per-
cent from the baseline probability). The findings of this paper show that the disclosure requirement

can facilitate voluntary adaptation by helping homebuyers make more informed choices.
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A Appendix A: Data Appendix

A.1 Flood History Data

Background. A key input to the flood damage function is flood size data. An ideal measure of flood
size should satisfy the following four conditions. First, it should be a continuous measure that allows
a non-linear relationship between flood size and damage (Burke et al. 2015, Hsiang 2016).

Second, it should be objective. For instance, the widely used EM-DAT measures flood size using
economic cost or death tolls, which are directly correlated with outcome variables of interest (Felber-
mayr and Groschl 2014). Another example of a potentially endogenous measure is the occurrence of
the Presidential Disaster Declaration (PDD) floods (Gallagher 2014), which depends on the discre-
tion of the president and thus could reflect political interests (Reeves 2011).

Third, it should be comprehensive. A few existing studies have leveraged meteorological measures
to objectively measure disasters, but most of them focus on a subset of events. For instance, Deryug-
ina (2017), Hsiang and Jina (2014), and Strobl (2011) have used physical measures of hurricane in-
tensity while Davenport et al. (2021) leveraged precipitation data. Despite objectivity, such an ap-
proach has limits in coverage—for instance, precipitation changes alone can explain only one-third of
cumulative flood damages (Davenport et al. 2021).

Lastly, since I measure flood damage at the community by year level, flood size should be mea-
sured at the same level. This is not trivial because most climate data are collected to answer physi-
cal science questions, and thus are not readily mapped into an administrative unit such as a commu-
nity (Carleton and Hsiang 2016).

To the best of my knowledge, no existing dataset satisfies all of these properties. In this paper,

I construct an objective measure of past flood events by applying a hydrologic method to the
USGS/NOAA water gauge records. This approach does not distinguish the cause of floods—
hurricanes, rainfall, snow melt, etc, as long as it is reflected in the water gauge level. Flood size is
defined and recorded by a recurrence interval, which represents the expected number of years for a
flood of a given size to come back, and thus is continuous by construction. Also, by matching gauge
stations to a community, I can measure flood size at the community level.

Procedure. Following the USGS guideline (England Jr et al. 2019), I implemented the following
steps using USGS/NOAA water levels data from 3,505 gauge stations distributed in the 26 ever-
disclosed states in the contiguous US (Appendix Figure A.1).%°

First, I construct a site-specific flood frequency distribution. For this, I retrieved annual peak flow
records using the R package “dataRetrieval” and fit the Log-Pearson III distribution to estimate
gauge-specific parameters (Cicco et al. 2018). Importantly, as I use annual peak discharge data to
fit the distribution, the quantile of the distribution has an intuitive interpretation. For instance, if
a certain water level is the 95th percentile of the distribution, it means that such an event would
happen with a 5 percent probability in a given year. Equivalently, such an event is called a 20-year
(ﬁ = 20) flood. I keep stations with at least 10 or more annual peak observations following the
USGS guideline. Also, I use annual peak data until 1990 to fix flood thresholds and make flood size
comparable across different years.

Second, I convert the daily water level into the recurrence interval using the fitted flood size dis-
tribution from the previous step. For this, I need an instantaneous flow, because flood exposure is
determined by the maximum, rather than mean, water level. The problem is that for most of the
stations, the maximum daily flow (or more precisely the instantaneous peak flow which enables cal-
culating maximum daily flow) data have too many missing values. This is problematic because, with

251 randomly sampled 1000 sites in Appendix Figure A.1 for visibility.
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Gauge Location

Figure A.1: The Distribution of a Sample of USGS/NOAA Gauges

Table A.1: Number of Stations with Non-Missing Water Levels Data in Towa

Name 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998
N Gauges (Mean Daily Flow) 112 112 105 107 109 109 105 109 112 111
N Gauges (Maximum Daily Flow) 3 8 40 72 34 31 29 34 59 95

many missing observations, flood events will be significantly under-recorded. To overcome this prob-
lem, I estimate a projected instantaneous peak flow from the mean daily flow. Appendix Table A.1
illustrates the benefit of using mean daily flow in alleviating the missing data problem. For this, I
report the number of water gauge stations in lowa that have daily water level records for at least 80
percent of the days (i.e., 292 days or more) for a given year. It can be easily seen that there can be
an order of magnitude difference in the number of stations that have mean versus maximum daily
water records.

To estimate the daily maximum water level from the daily mean water level, I use the Fuller
method in the following steps (Fuller 1913).2° Step 1, I list up gauge stations that (1) are located
in a given geographic units (state, HUC4, and HUC2) and (2) have both instantaneous peak flow
(QIPF) and mean daily flow (QMPF) records.?” Step 2, using these gauge stations, I estimate Fuller
coefficients using equation (6) (Fuller 1913). Step 3, using the estimated coefficients, I calculate the
projected instantaneous peak flow and compare that with the actual instantaneous peak flow to pick
the geographic unit that minimizes the prediction error. Step 4, using the chosen Fuller coefficients, 1
estimate instantaneous peak flow for gauges that only have daily mean flow records.

i =QEPT(1+ ad?) (6)

Now, by converting the estimated instantaneous peak flow to the quantile of the estimated Log-
Pearson IIT CDF from step 1, I identify each day’s flood size.
Third, I translate the quantiles into recurrence intervals and take the maximum recurrence interval

261 also did conversion following Sangal (1983), but the error between actual and the estimated IPF was much
smaller with Fuller (1913).

27 A watershed is uniquely identified by a hydrologic unit code (HUC). There are six levels in the hierarchy, and
HUC2 (regions) and HUC4 (sub-regions) are the two highest levels. There are a total of 18 and 202 HUC2s and HUC4s
in the contiguous US (Maimone and Adams 2023).
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for each year.?®

Finally, to translate gauge-level flood events to community-level floods, I match each community to
the three nearest gauges based on the distance between a centroid of the community and the gauge
station. Then, I use the maximum flood size among three stations as the community-level flood size.
Appendix Figure A.2 (b) presents the distribution of the average distance between gauges and com-
munity centroid. Over 90 percent of them are within 20 miles with a median distance of 13.5 miles.

CDF of Log-Pearson IlI (Site No. 03251000)

o
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Figure A.2: Flood Frequency Analysis and Gauge Matching. Panel (a) is an example of flood frequency anal-
ysis. The black solid line represents the CDF of the fitted Log-Pearson III distribution from the USGS site
03251000. If a daily discharge volume is 8,500 CFS, it corresponds to the 90th quantile or a 10-year flood.
Panel (b) presents the distribution of the distance between a gauge and community centroid. Over 90% of
them are within 20 miles with the median distance 13.5 miles.

Appendix Figure A.2 (a) illustrates steps 1 and 2 described above. The black solid line is the fitted
Log-Pearson IIT CDF from the USGS site 03251000. To fit the distribution, I use the annual peak
flow data from 1947 to 1990 to calculate the mean, standard deviation, and skewness parameters.
Now suppose that on a given date, the daily discharge volume is 8,500 CFS. As it corresponds to the
90th percentile of the CDF, it can be concluded that there was a 10-year flood on that day.

Note, because the USGS gauge stations rarely cover coastal areas, I add 45 additional NOAA sites
to the gauge station data. Zervas (2013) documents the flood threshold for all NOAA sites by fitting
GEV distribution, so I adopt them directly. NOAA water level data are retrieved using the R pack-
age “Rnoaa” (Edmund et al. 2014).

Unified flash flood database. The Unified Flash Flood Database (Gourley et al. 2013) is a USGS-
gauge record-based dataset constructed following a similar procedure described above. It is a com-
prehensive and objective measure of flood events that can present the overall trend of flood events
for the contiguous US, which overcomes many limitations of the existing data. However, I decided
not to use this database because the data are constructed based on the instantaneous peak flow. As
Appendix Table A.1 shows, relying solely on the instantaneous peak flow can substantially under re-
port flood events due to missing water level records.

Validation and summary statistics. To validate the flood history data, I check the number of aver-

28The recurrence interval for quantile g is ﬁ. For instance, a discharge volume of the 90th percentile, which means
it is the 90th highest among 100 yearly maximum observations, corresponds to a 10-year flood.
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age 10-year flood events over a 20-year period for the 8,194 communities from the 26 ever-disclosed
states that are on the Q3 map. By definition, a 10-year flood happens twice in a 20-year period on
average. Figure A.3 (a) shows that most communities had 1 or 2 10-year floods over the 20 years
whereas the average number of 10-year floods is 2.18. While this is slightly higher than 2, it is plau-
sible given that I stop updating annual peak flow beyond 1990 for consistency over time. Although
this approach can be problematic as the period in consideration gets longer, it should not be a major
problem for this paper as the sample period is 20 years.
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Figure A.3: Flood Data Summary Information. Panel (a) shows that most communities had 1 or 2 10-year
floods over the 20 years and the average number of 10-year flood is 2.18. Panel (b) shows the distribution of
flood event size (i.e., recurrence interval), where flood size is truncated at 100 for readability. Panel (c) illus-
trates the number of unique floods (size over 2) for community-year. Panel (d) repeats panel (c) for floods
with size over 10.

Figure A.3 (b) shows the distribution of flood size (i.e., recurrence interval), where flood size is
truncated at 100 for readability. As well documented in the literature, the histogram follows a log-
normal distribution, and the frequency decreases as an inverse power function of the flood size (Jack-
son 2013).

In panel (c), I plot the number of unique flood events for each community-year, conditional on
having an event with a flood size between 2 and 50. The histogram shows that about 70 percent of
the community-years have exactly one event. This alleviates a concern over measuring flood expo-
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sure as the maximum flood size for a given year. More importantly, when I limit attention to floods
with size over 10 in panel (d), which incurs disproportionately large damage, over 90 percent of the
community-year pairs have only one such event.

Table A.2: Comparing the Estimated Flood Size Thresholds with the NWS Threshold

2 Year Flood 10 Year Flood 50 Year Flood 100 Year Flood

Minor 0.778*** 1.285%** 1.74%%* 1.944***
(0.052) (0.071) (0.102) (0.124)
Moderate 0.594*** 0.994*** 1.36%** 1.526***
(0.042) (0.06) (0.085) (0.103)
Major 0.45%** 0.771%** 1.081*** 1.226%**
(0.034) (0.043) (0.051) (0.06)
Note:

Note: The entries report the results from 12 separate regressions where each
column represents four different dependent variables and each row repre-
sents three different regressors. Standard errors are clustered at the gauge
level. *p < 0.1; **p < 0.05; ***p < 0.01.

To better contextualize the recurrence interval based flood size, in Appendix Table A.2, I compare
flood size with the gauge-specific NWS thresholds for minor, moderate, and major floods.?” Specif-
ically, I estimate equation (7) where Q1 is the estimated flood threshold for site i for flood size k
where k € {2,10,50,100}. NW.S;; is flood thresholds from the NWS for site i for flood severity j
where j € {minor, moderate, major}.

Qi = BNWS;j + €5k (7)

B is the coefficient of interest which illustrates how comparable the two thresholds are. Namely,
the closer 8 is to 1, the more comparable the two thresholds are. For this analysis, I use 2,093 sites
that have both recurrence interval-based flood size and the NWS flood thresholds. Appendix Table
A2 reports the estimated § for 12 separate regressions and provides useful insights. First, a minor
flood from the NWS is comparable to a flood of size between 2 and 10. To see this, observe that
when a minor threshold increases by 1 unit, a 2-year flood threshold increases by only 0.78 units.
Conversely, when a minor threshold increases by 1 unit, a 10-year flood threshold increases by 1.29
units. Second, a 10-year flood threshold is tightly comparable to a moderate flood threshold (8 =
0.99). Similarly, a 50-year flood closely matches a flood with a major impact (8 = 1.08). Note, a 100-
year flood threshold is 23 percent higher than a major flood threshold, which is plausible given that
a 50-year flood threshold is comparable to the major category.

A.2 Validation of Key Dependent Variables

Appendix Table A.3 shows that key dependent variables in this paper have a prevalence of zeros.
These statistics are consistent with findings from external sources.

Block population. Bureau of the Census (1994) reports that a substantial number of blocks have
zero population, with state-level proportions ranging from 14 percent (RI) to 65 percent (WY), and

29NWS defines each flood category as the following (National Weather Service 2019). Minor: minimal or no prop-
erty damage, but possibly some public threat (e.g., inundation of roads). Moderate: some inundation of structures and
roads near a stream, evacuations of people, and/or transfer of property to higher elevations. Major:extensive inundation
of structures and roads, significant evacuations of people, and/or transfer of property to higher elevations.
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Table A.3: Summary Statistics for Key Variables

Variables Min. Q25 Median Mean Q75 Max. N
Census Block Population 0 0 13 37.5 44 9,888 2,723,580
Flood Damage Per Housing Unit 0 0 0 5.8 0 23,991 505,383
N of 10-Year Floods (For 20 Years) 0 1 2 218 3 15 8,194

a median value of 31 percent (WA). In my sample, the numbers are slightly different at 17 percent
for RI and 26 percent for WA (WY is a non-disclosure state). A minor discrepancy is not surprising
given that blocks not included in the digitized flood map are excluded from the analysis.

Flood damage. Similar to the flood insurance policy counts, no prior studies have cataloged the
fraction of community-years with zero flood damage. However, a back-of-the-envelop calculation sug-
gests that this statistic is in line with existing studies. For that, I take the average probability (1.45
percent) of filing a claim per policy over 1980-2012 from Kousky and Michel-Kerjan (2015) and mul-
tiply it by the number of flood insurance policies by the community in my sample. The result reveals
that 17 percent of communities are predicted to have more than one claim in a given year (i.e., 83
percent of community-year observations are predicted to have zero claims). Note, while 83 percent
is substantially lower than 95 percent as discussed in Section 3, this is a direct consequence of sam-
ple restriction: as I discuss in detail in Section 5.1, I remove floods with size 50 or above from my
analysis for various economic and statistical reasons. When I undertake the same calculation without
imposing these sample restrictions, I find that 86 percent of community-year observations have zero
claims, a figure consistent with the 83 percent calculated based on Kousky and Michel-Kerjan (2015).
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B Appendix B: Disclosure and Flood Insurance Take Up

To evaluate the impact of the disclosure requirement on flood insurance take up, I collect the num-
ber of flood insurance policies at the National Flood Insurance Program (NFIP) community level for
1978-2008.% As a typical community contains both SFHA and non-SFHA areas (Appendix Figure
D.3 and D.4), the distance to the nearest SFHA border is not defined. Thus, I estimate a triple dif-
ference model in equation (8). Here, Y;,stq denotes outcome variables on NFIP for community m in
state s in year t in stack d. H,,4 is an indicator variable equal to one if a community has an above-
median fraction of the area covered by an SFHA, which proxies for the treatment intensity. Igq is a
post disclosure indicator and Dgq is a treatment group indicator. a; captures the disclosure effect.?!

log(ymstd) = aOHstdIstd + alesttdIstd + Wsta + wmd + Emstd (8)

Similar to Section 5.1, I use the stacked approach to estimate the policy impact using clean con-
trols (Cengiz et al. 2019, Brot-Goldberg et al. 2020). To construct the data stack, I first keep each
state’s flood insurance data for seven years before and after the policy change to prevent composition
changes.®> Then I follow similar steps as described in Section 5.1. Equation (8) also include wsq, the
state x time x stack fixed effect to account for year-specific state level shocks and a community x
stack fixed effect 1,4, which captures unobserved community characteristics. Including these fixed
effects ensures that the comparisons are made within each stack.

Table B.1: Effect of Discosure Requirement on Flood Insurance Take-Up

Prob. of Any Log Insurance
Insurance Per Housing Unit
M @) ) @
High SFHA x Disclosure x Post .003 .003 —.024 —.023
(.007) (.008) (.030) (.030)
Avg D.V. 0.823 0.819
State x Year x Stack FE X X X X
Community x Stack FE X X X X
Sample All No Map Update All No Map Update
Num. obs. 400919 390382 329863 319639

Note: This table is produced from equation (8) using community-level NFIP data. In columns (2) and (4), commu-
nities with flood map updates are excluded. Standard errors are clustered at the state level. *p < 0.1; **p < 0.05;
ok ok

p < 0.01.

In Appendix Table B.1 column (1), I show the disclosure policy increases the probability of having
at least one flood insurance policy in high-risk communities relative to low-risk communities by 0.003
(or 0.4 percent from the baseline of 0.82). Column (3) indicates the intensive margin effect of the
disclosure policy on the number of insurance policies per housing unit is also small at —2 percent.
Further, in Appendix Table B.1, columns (2) and (4), I show that removing communities that have
experienced map updates during the sample period produces similar results as columns (1) and (3).
Given the estimated coefficients, flood insurance does not seem to be the primary margin homebuy-
ers respond to the disclosure policy.

39T thank Justin Gallagher for graciously sharing these data.
31Other terms in a standard triple difference model are subsumed by fixed effects.
32The data from 1978-2008 are sufficient to cover a 15-year window for policy changes in all states except Louisiana,
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Figure B.1: The Effect of Disclosure on the Probability of Having Any Flood Insurance. This figure depicts
the impact of disclosure on the probability of having any flood insurance policy at the community level using
an event study version of equation (8). The error bar represents the 95% confidence interval.

In Appendix Figure B.1, I plot the differential impact of disclosure policy on the probability
of having flood insurance for high-risk communities in event time using an event study version of
equation (8). The estimated coefficients show no pre-trend and a small increase in the probability of
flood insurance take up after the policy change. A simple average of estimated coefficients in the pre
vs. post treatment event time suggests that the magnitude of policy effect is 0.007, which is larger
than column (1) in Table B.1 yet still small.

which implemented its policy in 2003, leaving just six post-policy years for analysis.
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C Appendix C: Robustness Checks

C.1 Robustness Checks for Population Changes

Two potential concerns regarding the validity of the results in Section 4.2 merit attention. First, the
disclosure requirement may have a spillover effect (Donaldson 2015). For instance, homebuyers who
would have chosen properties on SFHAs may instead choose nearby properties in non-SFHAs after
the disclosure policy, which may violate the stable unit treatment value assumption (SUTVA).

Second, while my difference-in-discontinuity design controls for time-invariant confounders, concur-
rent policy changes are still a threat to identification. Although, as discussed in Section 2, compli-
ance with the flood insurance mandate was far from perfect, especially during the sample period of
this study, one might worry that there have been changes in the enforcement of the flood insurance
purchase requirement over time. Additionally, updates to flood maps could have served as a compet-
ing source of informational shock (Gibson and Mullins 2020, Bakkensen and Ma 2020, Weill 2021,
Hino and Burke 2021).

Per the first issue, it is important to note that the area covered by the SFHA is relatively small in
a typical jurisdiction, which makes it unlikely that non-SFHA areas will be seriously “contaminated”
by the disclosure requirement (Busso et al. 2013, Alves et al. 2024). For instance, as shown in Ap-
pendix Figure D.4, the median community has only 7.8% of its land area in SFHA. Similarly, only
15% of blocks in the difference-in-discontinuity analysis sample (corresponds to Table 4.1 column (1))
are in the SFHA. Further, as of 1990 (before any disclosure policy), the average population of high
risk blocks is 13, which is substantially smaller than 35, the average population in non-SFHA blocks.

Consistent with this, the results are similar when I reproduce Table 4.1 after removing blocks that
are located in communities with a high fraction (50% or more) of high flood risk areas. Appendix
Table C.1 shows that the estimates are essentially identical to Table 4.1, which suggests that
spillover effects are likely small in this setting.

Table C.1: Effect of Discosure Requirement on Net Population Flow (w/o Blocks in High Risk Com-
munities)

Log Prob. of Any Vacancy
Population Population Rate
M @) )
SFHA x Post —.070** —.012%** .015%**
(.032) (.003) (.003)
Avg D.V. 0.675 0.095
Bandwidth 301 138 262
Num. obs. 1829292 1400151 1620985
Note: Columns (1)—(3) are estimated based on equation (1) using the decennial

census block-level data in 1990, 2000, 2010, and 2020. Blocks in communities with
over 50% of land areas in SFHA are excluded. Standard errors are clustered at the
state level. *p < 0.1; **p < 0.05; ***p < 0.01.

Despite the results in Appendix Table {tab:netpopsmall}, one might believe that spillover effects
can be large, especially at the local level. To investigate this possibility, I repeat my analysis using
a doughnut difference-in-discontinuity approach that excludes blocks very close to the border (Kline
and Moretti 2014). The idea is that if there is endogenous sorting near the border, the treatment ef-
fect may change when those observations are excluded (Cattaneo and Titiunik 2022). In Appendix
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Table C.2, I show that the estimates are similar even if I remove blocks that are within 20 or 40 me-
ters from the border.

Table C.2: Effect of Discosure on Population and Vacancy Rate (Doughnut Specification)

Log Prob. of Any  Vacancy Log Prob. of Any Vacancy
Population Population Rate Population Population Rate
(1) (2) () 4) () (6)
SFHA x Post —.079** —.012*%* .013** —.080** —.007 .014**
(.031) (.004) (.004) (.033) (.005) (.006)
Avg D.V. (Within BW) 0.692 0.093 0.704 0.092
Doughnut Size 20 20 20 40 40 40
Num. obs. 1763552 1227096 1549019 1607388 984066 1394047
Note: This table is produced from equation (1) after excluding observations closest to the SFHA border. In columns (1)—(3), doughnut
sizes are 20 meters and in columns (4)—(6) doughnut sizes are 40 meters. Standard errors are clustered at the state level. *p <  0.1;

**p < 0.05; ***p < 0.01.
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Figure C.1: The Effect of the Disclosure Requirement on Population and Vacancy Rate for Different Band-
widths. These figures plot dg from equation (1) for a range of bandwidths. The level of observation is census
block, which is the smallest census geographical unit. Standard errors are clustered at the state level.

Consistent with Appendix Table C.2, Appendix Figure C.1 shows that the policy effect does not
diminish even if I expand the bandwidth. Further, in Appendix Figure C.2, I repeat my analysis us-
ing progressively farther away control blocks while holding treated blocks fixed (to those within the
optimal bandwidth). In particular, I estimate equation (1) using control blocks that are within the
distance of (r — 1) X optimal bandwidth and r x optimal bandwidth for r € {1,2,3,4,5}. Again,
Appendix Figure C.2 shows that disclosure policy reduces population and increases vacancy rate.
Taking these results together, potential spillover effects do not seem to be a major threat to identifi-
cation.

To address potential concerns over concurrent policy changes, I conduct three robustness checks.
First, I use the five placebo states that have implemented disclosure policies without a question
about flood risk. If my findings are driven by concurrent policy changes rather than the disclosure
of flood risk, T would expect to find similar results in the placebo states. In Appendix Table C.3, 1
repeat Table 4.1 for placebo states and find no evidence of a reduction in population or an increase
in the vacancy rate in the placebo states.?’

33 As there are only five placebo states, I use wild bootstrap for inference and report P.values in parentheses.
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Figure C.2: The Effect of the Disclosure Requirement on Population and Vacancy Rate by Control Group
Distance Bin. These figures plot b6 from equation (1) for control groups of varying distance. The horizontal
axis indicates the distance bin of control group in multiples of variable specific optimal bandwidth (i.e., dis-
tance bin r on x-axis indicates that control group blocks are within (r — 1) and r times optimal bandwidth).
The level of observation is census block, which is the smallest census geographical unit. Standard errors are
clustered at the state level.

Table C.3: Effect of Discosure Requirement on Household Responses (Placebo States)

Log Prob. of Any
Population Population

(1) (2) 3)

Vacancy Rate

SFHA x Post 040 —.001 1000
(.601) (.899) (.987)
Avg D.V. (Within BW) 0.659 0.089
Bandwidth 459 452 324
Num. obs. 169094 253533 130398

Note: This table is produced from equation (1). Columns (1)—(3) are estimated
using the decennial census block-level data in 1990, 2000, 2010, and 2020. Boot-
strapped p.values are reported in parentheses. *p < 0.1; **p < 0.05; ***p < 0.01.
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Second, I allow time-varying discontinuity at the SFHA border to more directly control for confound-
ing policy changes. For this, I estimate equation (9).

Yyt = 00 + 01 Xps + 00 Dps + 03 Xps Dps + Z Gt[(56 + (ﬁsz + 5§Dbs + 5§szDbs]+
t={2000,2010,2020} (9)

Tst[64 4 05 Xps + 66 Dps + 07 Xps Dps] + €pst

Here G, is an indicator that takes 1 if the time period is in ¢t = {2000, 2010,2020}. Importantly,
Gy = 0% allows period-specific discontinuities (1990 is omitted as baseline). The rest of the notations
follow equation (1) and the coefficient of interest is dg as before.

Table C.4: Effect of Discosure on Population and Vacancy Rate (Time Varying Discontinuity)

Log Prob. of Any Vacancy
Population Population Rate
(1) (2) () (4) (5) (6)

SFHA x Post —.314 .589 123 337 .026 —.036

(.013) (.458) (.001) (.047) (.250) (.375)
Group Treated Placebo Treated Placebo Treated Placebo
Avg D.V. 0.675 0.659 0.095 0.089
Bandwidth 301 459 138 452 262 324
Num. obs. 1900591 167160 1331286 225007 1685653 128772

Note: This table is produced from equation (9). Columns (1)-(2) show the impact on log of population
for treated and placebo states while columns (3)-(4) show the impact on the probability of having any
population and columns (5)-(6) on the vacancy rate. P.values, which are calculated using clustered stan-
dard error for columns (1), (3), and (5) and bootstrapping for columns (2), (4), and (6), are reported in
parentheses.

Appendix Table C.4 shows that the impact of disclosure policy on the log of population in column
(1) and vacancy rate in column (5) are much larger than the preferred specification in Table 4.1, al-
though the effect on vacancy rate is statistically insignificant (p.values are reported in parentheses).
One exception is in column (3), which shows that the policy has a positive impact on the probabil-
ity of having any population. However, when compared with the impact on placebo states in column
(4), the net effect still seems to be negative.

Table C.5: Effect of Discosure on Net Population Flow (Exc. Blocks with Map Revision)

Log Prob. of Any Vacancy
Population Population Rate
0 @ ®
SFHA x Post —.072** —.011*** .014***
(.031) (.003) (.004)
Avg D.V. 0.67 0.098
Bandwidth 301 138 262
Num. obs. 1680266 1312266 1493043

Note: Estimates are based on equation (1) after removing geographic units
that have experienced flood map update. Standard errors are clustered at
the state level. *p < 0.1; **p < 0.05; ***p < 0.01.

Third, in Appendix Table C.5, I reproduce Table 4.1 after removing geographic units that have expe-
rienced flood map updates over the sample period and find that the results barely change.
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C.2 Robustness Checks for Damage Reduction

I test the robustness of my findings in Section 5.2 by conducting a placebo test using the five states
that had implemented disclosure policies without a question on the flood risk.

Table C.6: Effect of Disclosure Requirement on Flood Damage (Placebo States)

Prob. of Any
Damage
M @ )
Post x Disclosure (Size 2-30)  —.029** —.047*** —.014
(.012) (.017) (.010)
Post x Disclosure (Size 30-50)  .209*** .285%** 131*
(.056) (.102) (.070)
Sample All High SFHA Low SFHA
Year x Stack FE X X X
Community x Stack FE X X X
Num. obs. 31246 14984 16262

Note: This table repeats Table 5.1 using the placebo states. The dependent variables in
columns (1) to (3) are the probability of having any flood damage per housing unit. Col-
umn (1) is based on the entire set of communities while in columns (2) and (3), I repeat
(1) using the subsample of communities with an above median SFHA ratio and below me-
dian SFHA ratio. Spatial-HAC standard errors that allow spatial correlation of up to 500
miles are estimated for inference for columns (1)—(3). *p < 0.1; **p < 0.05; ***p < 0.01.

In Appendix Table C.6, I estimate a version of equation (4) with coarser flood bins.** In columns
(1) to (3), the coefficients for large floods are positive. Such an increase in damage in the absence
of flood risk disclosure is consistent with Figures 5.1 (a), (c), and (e), which show flood damage in-
creases over time for not-yet-disclosed states.

0.2

0.0 } °

Prob. of Any Damage for Larger Floods

-4 -3 -2 -1 0 1 2 3
Years Since Disclosure

e Estimate — 95% Cl
Figure C.3: The Effect of Disclosure on the Damage in Event Time. This figure depicts ﬁi’f{_m for flood size

of 30-50 in event time ¢ where the dependent variable is probability of having any damage. The error bar
represents the 95% confidence interval.

Another robustness check comes from an event study plot in Appendix Figure C.3, which illus-
trates the marginal effects of disclosure policy on the probability of flood damage for larger (k =

34For statistical power, I group flood events into baseline (k = 1 — 2), small (k = 2 — 30) and large (k = 30 — 50).
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30 — 50) floods. Similar to Appendix Table C.6, T use coarser flood bins to increase power. I also im-
pose an endpoint restriction at -5 and 4. The estimated coefficients show no pre-trend and sharp and
persistent reduction in the probability of flood damage after the policy change. Simple average of es-
timated coeflicients in the pre vs. post treatment event time suggests that the magnitude of policy
effect is —.19. This on par with the average policy effect (—.17) of two flood categories & = 30 — 40
and k =40 — 50 in column (1) in Table 5.1.

Table C.7: Effect of Disclosure on Flood Damage (Exc. Communities with Map Revision)

Prob. of Any Damage Log Damage
Per Housing Unit Per Housing Unit
(1) (2) (3) (4)
Post x Disclosure (Size 2-10) —.038* —.054% —.020 .089
(.023) (.030) (.015) (.256)
Post x Disclosure (Size 10-20)  —.060 —.070 —.043* .249
(.037) (.051) (.024) (.214)
Post x Disclosure (Size 20-30)  —.081** —.132%** —.015 .034
(.037) (.042) (.037) (.590)
Post x Disclosure (Size 30-40)  —.139* —.151** —.124 —.596
(.078) (.062) (.102) (.430)
Post x Disclosure (Size 40-50) —.219*** —.352%** —.072 —.377
(.068) (.065) (.083) (.562)
Annual Effect -0.023** -0.032%** -0.012 0.009
(0.01) (0.011) (0.009) (0.053)
Sample All High SFHA Low SFHA Damage > 0
Year x Stack FE X X X X
Community x Stack FE X X X X
Num. obs. 487704 233225 254479 20619

Note: This table repeats Table 5.1 after removing communities that have experienced map updates during the sam-
ple period. Spatial-HAC standard errors that allow spatial correlation of up to 500 miles are estimated for inference.
*p < 0.1; **p < 0.05; ***p < 0.01.

Appendix Table C.7 shows that excluding communities with map revision produces essentially the
same results.

Finally, Appendix Table C.8 shows that clustering standard errors at the state level reaches similar
conclusion as Table 5.1 especially for the annualized effects.
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Table C.8: Effect of Disclosure Requirement on Flood Damage (State Level Clustering)

Prob. of Any Damage Log Damage
Per Housing Unit Per Housing Unit
M @ &) @
Post x Disclosure (Size 2-10) —.039* —.056* —.021 —.063
(.020) (.029) (.013) (.354)
Post x Disclosure (Size 10-20)  —.072 —.086 —.051 189
(.045) (.070) (.031) (.277)
Post x Disclosure (Size 20-30)  —.080* —.131* —.018 .170
(.044) (.066) (.037) (.608)
Post x Disclosure (Size 30-40) —.141 —.172* —.111 —.360
(.090) (.095) (.096) (.624)
Post x Disclosure (Size 40-50) —.197*** —.339%* —.054 —.425
(.066) (.084) (.053) (.582)
Annual Effect -0.023%* -0.034** -0.012 -0.012
(0.01) (0.014) (0.008) (0.072)
Sample All High SFHA Low SFHA Damage > 0
Year x Stack FE X X X X
Community x Stack FE X X X X
Num. obs. 505383 242458 262925 22100

Note: This table repeats Table 5.1 with state level clustering. *p < 0.1; **p < 0.05; ***p < 0.01.

D Appendix D: Additional Tables and Figures

Table D.1: Balance Table (Tracts by the SFHA Status)

No SFHA With SFHA Difference
Variables Mean SE Mean SE Mean  t-stat
N Housing Unit 1377 6.31 1408 4.2 32 1.2
N Home Age Below 6 92 1.58 160 1.14 68 4.64

N Home Age Above 42 558 5.09 343 2.44 -216 -3.7
(%) Home Age Below 6 0.078  0.0012 0.1296 9e-04  0.052 4.1
(%) Home Age Above 42 0.3961 0.0028 0.2337 0.0014 -0.162 -3.8

Note:

This table compares the proportion of older and newer housing stocks in
census tracts with and without SFHAs using the 1990 decennial census. The
last two columns show mean differences with t-statistics. Standard errors are
clustered at the state level.

Back to 2.
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Table D.2: State Characteristics in 1990

Ever/Early Never/Late Difference
Variables Mean SE Mean SE Mean P.Value
Panel A: Ever vs. Never States
Population (millions) 6.57 131 343 0.651 3.143 0.048
Median Age 33.04 0.204 32.82 0.409 0.22 0.616
(%) White 0.827 0.019 0.879 0.018 -0.053 0.051
(%) BA 0.121  0.005 0.129 0.006 -0.007 0.324
Unemployment Rate 0.06  0.003 0.061 0.002 -0.001 0.773
GDP (billions) 152 34.38 74 14.95 78 0.057
N Housing Units (millions) 266 0.506 147 0.291 1.187 0.059
(%) Vacancy 0.095 0.005 0.132 0.008 -0.037 0
Democratic Party Vote Share 0.455 0.01  0.425 0.012 0.03 0.06
Average Flood Damage per Housing Unit  3.86 1.99 0931 0.5 2925 0.194
Flood Size 592 0.82 329 0.725 2.635 0.022
(%) in SFHA 0.16 0.012 0.132 0.013 0.028 0.117
Panel B: Early vs. Late States
Population (millions) 5563 129 78 242 -2.274 0.397
Median Age 33.07 0.286 33 0.302 0.071  0.865
(%) White 0.842 0.026 0.808 0.027 0.034 0.374
(%) BA 0.119 0.006 0.124 0.008 -0.005 0.592
Unemployment Rate 0.061 0.004 0.06 0.004 0.001 0.89
GDP (billions) 119 29.72 191 66 -T2 0.306
N Housing Units (millions) 225 0527 3.12 0917 -0.87 0.402
(%) Vacancy 0.095 0.007 0.096 0.007 -0.001 0.908
Democratic Party Vote Share 0.47 0.013 0438 0.014 0.031 0.118
Average Flood Damage per Housing Unit  3.82 1.99 3.9 3.75  -0.088 0.983
Flood Size 5.71 1.05 6.17 1.34 -0.465 0.784
(%) in SFHA 0.157 0.01  0.163 0.023 -0.006 0.788
Note:

This table compares key characteristics of ever-disclosed vs. never-disclosed (Panel A) and
early-disclosed vs. late-disclosed (Panel B) states. All variables are as of 1990 except for the
Democratic party vote share variable, which comes from 1988 presidential election. The last
two columns show mean differences and p-values.

Back to 2.
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Table D.3: Effect of Disclosure Requirement on Flood Damage

Prob. of Any Damage Log Damage
Per Housing Unit Per Housing Unit
M 2 ) @
Flood Size 2-10 .020%** L0227 .019** .223%%*
(.007) (.008) (.008) (.054)
Flood Size 10-20 .054%** 071 .039%** 1.140***
(.012) (.016) (.010) (.104)
Flood Size 20-30 078 .108*** .048%* 2.095***
(.023) (.032) (.013) (.419)
Flood Size 30-40 .068*** .082*** .052* 1.584***
(.024) (.031) (.027) (.338)
Flood Size 40-50 .096** 1447 .026 1.850***
(.042) (.046) (.040) (.254)
Disclosure x Size 2-10 .028%** .039%** .014%* .087
(.009) (.015) (.005) (.164)
Disclosure x Size 10-20 .094*** 17 .065*** —.003
(.017) (.026) (.009) (.086)
Disclosure x Size 20-30 1145 1447 .075%** —.164
(.018) (.028) (.017) (.138)
Disclosure x Size 30-40 .106*** 12% .100%%* 077
(.030) (.033) (.030) (.156)
Disclosure x Size 40-50 107 115 .100*** —.048
(.044) (.054) (.031) (.406)
Post x Size 2-10 .028** .035%** .018* 452%*
(.012) (.012) (.010) (.184)
Post x Size 10-20 094+ .096%** .088*** .086
(.030) (.034) (.030) (.076)
Post x Size 20-30 .105%* 17 .093*** —.349
(.028) (.032) (.032) (.326)
Post x Size 30-40 1917 .246%** .140* .668*
(.054) (.044) (.078) (.361)
Post x Size 40-50 .239%** .356%** .135%** .629**
(.040) (.042) (.046) (.312)
Post x Disclosure x Size 2-10 —.039* —.056* —.021 —.063
(.023) (.030) (.015) (.325)
Post x Disclosure x Size 10-20 —.072* —.086* —.051* .189
(.039) (.050) (.029) (.189)
Post x Disclosure x Size 20-30 —.080*** —.131%** —.018 170
(.029) (.038) (.031) (.562)
Post x Disclosure x Size 30-40 —.141* —.172** —.111 —.360
(.073) (.072) (.082) (.442)
Post x Disclosure x Size 40-50 —.197*** —.339*** —.054 —.425
(.055) (.061) (.068) (.540)
Sample All High SFHA Low SFHA Damage > 0
Year x Stack FE X X X X
Community x Stack FE X X X X
Num. obs. 505383 242458 262925 22100

Note: This table shows the full sets of coefficients for Table 5.1. *p < 0.1; **p < 0.05; ***p < 0.01.

Back to 5.2.
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Figure D.1: Correlation Between Disclosure Timing and Flood Profiles. These figures plot the disclosure policy
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ILLINOIS Illinois REALTORS®
P RESIDENTIAL REAL PROPERTY DISCLOSURE REPORT

(765 ILCS 77/35)

NOTICE: THE PURPOSE OF THIS REPORT IS TO PROVIDE PROSPECTIVE BUYERS WITH INFORMATION ABOUT MATERIAL
DEFECTS IN THE RESIDENTIAL REAL PROPERTY. THIS REPORT DOES NOT LIMIT THE PARTIES’ RIGHT TO CONTRACT FOR THE
SALE OF RESIDENTIAL REAL PROPERTY IN “AS IS” CONDITION. UNDER COMMON LAW, SELLERS WHO DISCLOSE MATERIAL
DEFECTS MAY BE UNDER A CONTINUING OBLIGATION TO ADVISE THE PROSPECTIVE BUYERS ABOUT THE CONDITION OF
THE RESIDENTIAL REAL PROPERTY EVEN AFTER THE REPORT IS DELIVERED TO THE PROSPECTIVE BUYER. COMPLETION OF
THIS REPORT BY THE SELLER CREATES LEGAL OBLIGATIONS ON THE SELLER; THEREFORE SELLER MAY WISH TO CONSULT
AN ATTORNEY PRIOR TO COMPLETION OF THIS REPORT.

Property Address:
City, State & Zip Code:

Seller’s Name:

This Report is a disclosure of certain conditions of the residential real property listed above in compliance with the Residential Real Property
Disclosure Act. This information is provided as of ,20__ , and does not reflect any changes made or occurring
after that date or information that becomes known to the seller after that date. The disclosures herein shall not be deemed warranties of any kind by
the seller or any person representing any party in this transaction.

In this form, “am aware” means to have actual notice or actual knowledge without any specific investigation or inquiry. In this form, a “material
defect” means a condition that would have a substantial adverse effect on the value of the residential real property or that would significantly impair
the health or safety of future occupants of the residential real property unless the seller reasonably believes that the condition has been corrected.

The seller discloses the following information with the knowledge that even though the statements herein are not deemed to be warranties,
prospective buyers may choose to rely on this information in deciding whether or not and on what terms to purchase the residential real property.

The seller represents that to the best of his or her actual knowledge, the following statements have been accurately noted as “yes” (correct), “no”
(incorrect), or “not applicable” to the property being sold. If the seller indicates that the response to any statement, except number 1, is yes or not
applicable, the seller shall provide an explanation, in the additional information area of this form.

YES NO NA

1. _ _ __ Sellerhas occupied the property within the last 12 months. (No explanation is needed.)

2. _ __ __ Tamaware of flooding or recurring leakage problems in the crawl space or basement.

3. __ __ Tlamaware that the property is located in a flood plain or that I currently have flood hazard insurance on the property.

4. Tamaware of material defects in the basement or foundation (including cracks and bulges).

5. Tlamaware of leaks or material defects in the roof, ceilings, or chimney.

6. _ __ __ lamaware of material defects in the walls, windows, doors, or floors.

7. __ Tamaware of material defects in the electrical system.

8 1 am aware of material defects in the plumbing system (includes such things as water heater, sump pump, water
treatment system, sprinkler system, and swimming pool).

9. _ __ __ Iamaware of material defects in the well or well equipment.

10. _ _ _ Iamaware of unsafe conditions in the drinking water.

1. _ _ _ TIamaware of material defects in the heating, air conditioning, or ventilating systems.

122 __ Tamaware of material defects in the fireplace or wood burning stove.

13. _ _ _ Tamaware of material defects in the septic, sanitary sewer, or other disposal system.

14 _ _ __ Tamaware of unsafe concentrations of radon on the premises.

15. _ _ __ lamaware of unsafe concentrations of or unsafe conditions relating to asbestos on the premises.

16. _ _ __ Iamaware of unsafe concentrations of or unsafe conditions relating to lead paint, lead water pipes, lead plumbing pipes
or lead in the soil on the premises.

17.. _ __ __ Iam aware of mine subsidence, underground pits, settlement, sliding, upheaval, or other earth stability defects on the
premises.

18. _ _ _ Tamaware of current infestations of termites or other wood boring insects.

19. _ _ _ Tamaware of a structural defect caused by previous infestations of termites or other wood boring insects.

20 __ lamaware of underground fuel storage tanks on the property.

2. _ _ _ Tamaware of boundary or lot line disputes.

22. _ __ __ Thave received notice of violation of local, state or federal laws or regulations relating to this property, which violation
has not been corrected.

23. I am aware that this property has been used for the manufacture of methamphetamine as defined in Section 10 of the

Methamphetamine Control and Community Protection Act.

Note: These disclosures are not intended to cover the common elements of a condominium, but only the actual residential real property
including limited common elements allocated to the exclusive use thereof that form an integral part of the condominium unit.

Note: These disclosures are intended to reflect the current condition of the premises and do not include previous problems, if any, that the seller
reasonably believes have been corrected.

FORM 108 (05/2019) COPYRIGHT ILLINOIS REALTORS" Page 1 of 4
Figure D.2: Example of the Home Seller Disclosure Form (IL)

Back to 2.

43



CORPORATE L

et
r s

ELEVATION REFERENCE MARKS

75t oot .

Back to 2.

FIRM

mu-%m:@

BORO! ibr
STO! 'TO!
CO!

NEW LO!

Figure D.3: Sample Flood Insurance Rate Map (Borough of Stonington, CT)
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Figure D.4: Histogram of the Proportion of the SFHA at the Community Level. The plot shows the distribu-
tion of the SFHA ratio for the 8,194 communities that are on the Q3 map (first generation of digitized flood

map) and in the 26 ever-disclosed states.
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Figure D.5: Census Geographies and the SFHA Status (Borough of Stonington, CT)
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Figure D.6: Histogram of Running Variable (Distance to the SFHA Border)
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Figure D.7: The Effect of the Disclosure Requirement on Log of Population in Event Time. This figure plots
the impact of disclosure requirement on log of block population in event time. Event time is defined as -2 for
—19 to —10 years and -1 for -9 to —1 years before the treatment and, 0 for 0 to 9 years, and 1 for 10-19 years
after the policy change. I limit the sample to blocks that are observed in at least four decennial censuses.
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Figure D.8: Population and Housing Unit Trends in Event Time. These figures plot the (a) average population
and (b) average number of housing units for SFHA and non-SFHA blocks within the optimal bandwidth in
event time. Event time is defined as -1 for pre-treatment periods, 0 for post-treatment periods up to 9 years
after the policy change, and 1 for post-treatment period of 10-19 years after the policy change.
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Figure D.9: The Effect of Disclosure on the Damage Function with 95% Confidence Intervals. These plots

reproduce Figure 5.1 with corresponding confidence intervals.
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