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Abstract

While flood damage is determined by both flood intensity and population exposure, the US has
predominantly focused on managing the former, with limited success. This paper studies whether a
Home Seller Disclosure Requirement can reduce flood exposure and thus flood damage. Leveraging
two quasi-experimental variations of the policy, I first show that mandating flood risk disclosure lowers
the population living in high-risk areas. Further, using a hydrological measure of flood intensity, I find
that it reduces the probability of flood damage by 31 percent. These findings illustrate that easing
information frictions can promote voluntary adaptation to natural disasters.
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1 Introduction

Since 1980, floods in the United States have wrought over $1 trillion in damage, making them the

costliest type of natural disaster over the last 40 years (NOAA 2020). Climate scientists predict

flooding is likely to happen with higher frequency and intensity in the future (Milly et al. 2002,

Ghanbari et al. 2019). Thus, effective adaptation, which is an activity to moderate or avoid harm, is

increasingly important (IPCC 2014, Aldy and Zeckhauser 2020).

While flood damage is determined by both flood intensity (i.e., physical characteristics) and ex-

posure (i.e., population size in high-risk areas), flood policy in the US has focused primarily on

managing the former by adding engineering structures (Changnon et al. 2000, Field et al. 2012,

Tarlock 2012, Liao 2014). Unfortunately, such structural approaches, which are not failproof, can in-

advertently exacerbate the problem by attracting more people and developments to floodplains (the

so-called “levee effect”) (Pinter 2005, Kousky et al. 2006, Collenteur et al. 2015).1 Consequently, gov-

ernments end up spending billions of dollars for disaster relief and recovery on top of the resources

devoted to flood prevention (CBO 2016). Given these limitations, disclosure policies that aim to

reduce flood exposure by affecting location choices are getting more attention, but little is known

about such a policy’s effect and mechanisms.2

This paper exploits quasi-experimental variations from a Home Seller Disclosure Requirement

(hereafter “the disclosure requirement”) to study whether easing information frictions about flood

risk can reduce (1) the number of households in high-risk areas and (2) resulting flood damage. Al-

though official flood maps have long been publicly available, earlier research and anecdotal evidence

suggest a lack of flood risk awareness among homebuyers. For instance, Chivers and Flores (2002)

find only 14 percent of homebuyers in high-risk areas learned about flood risk before closing. Such

low awareness makes it unlikely that homebuyers fully internalize the costs of flood risk during real

estate transactions. Given that a potential reason for the friction is information acquisition and pro-

cessing costs (Kunreuther and Pauly 2004), the disclosure requirement could alleviate the problem by

efficiently delivering risk information.
1Flood prevention structures frequently fail as evidenced by the 1993 Midwest Flood where over 1,000 levees failed

(LARSON 1996). A major contributing factore to these failures is the lack of maintenance, with only 1.9% of US levees
rated as “Acceptable” (Pinter et al. 2016)

2For instance, FEMA has recently proposed an NFIP reform tying a community’s flood insurance eligibility to
mandatory flood risk disclosure before real estate transactions (U.S. Department of Homeland Security 2022).

2



The policy mandates that home sellers must disclose known property issues on a wide range of

dimensions including land, structure, and ambient environments using a standardized form (Lefcoe

2004). Regarding flood risk, a typical question is if a property is located in a Special Flood Hazard

Area (SFHA)—an area with elevated risk defined by the official flood map. Home sellers are gener-

ally obliged to fulfill the disclosure requirement before closing (Stern 2005).

The disclosure requirement was rolled out across 26 states in the contiguous US from 1992–2003.

The variation in implementation timing is from plausibly exogenous state court rulings on the ex-

tent of realtor liability for incomplete disclosure (Roberts 2006), which facilitates a difference-in-

differences research design. In addition, the disclosure requirement treats properties located in and

out of the SFHA differently, which introduces a third difference to further aid in identification. In ex-

ploiting the staggered adoption of the disclosure requirement, I use the stacked approach to overcome

potential bias from conventional two-way fixed effect models (Cengiz et al. 2019, Brot-Goldberg et al.

2020, Goodman-Bacon 2021).

I also leverage additional variation stemming from the spatial discontinuity in flood risk informa-

tion at the flood zone border. That is, homebuyers for two proximate properties located on opposite

sides of an SFHA border—over which flood risk is changing continuously—receive starkly different

flood risk information, which yields an opportunity to identify the information effect holding true

flood risk constant. A potential concern is that being located in the SFHA could invite other treat-

ments such as the mandatory purchase of flood insurance. Thus, I use the difference-in-discontinuity

approach to control for time-invariant confounders (Grembi et al. 2016).

I collect multiple datasets to leverage these variation in empirical models designed to recover the

causal effect of increased information about flood risk during real estate transactions. I use census-

block-level demographic data from the decennial census, and community-level flood insurance policy

counts from the National Flood Insurance Program (hereafter “flood insurance” or “NFIP”). To

measure flood damage, I use damage records from flood insurance adjuster reports. I also construct

historical dataset of community-level flood events based on a hydrological measure of flood intensity

(Saharia et al. 2017, England Jr et al. 2019). These data overcome the potential endogeneity of self-

reported flood events, such as those from the National Weather Service Storm Events data (Gall et

al. 2009). Because the main outcome variables used in the analysis have a mass point at zero with a

long right tail, I estimate the extensive and intensive margin effects separately following suggestions
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of Chen and Roth (2022).

I analyze the data in two parts that correspond to the two research questions posed earlier. First,

I investigate homebuyer responses to the disclosure policy. Specifically, building on the insights from

Ehrlich and Becker (1972)—households mitigate hazard risk by choosing between self protection and

market insurance—I empirically estimate the impact of the disclosure requirement on the geographic

distribution of the population and flood insurance take up rates. Second, I use a flood damage func-

tion to test if the disclosure policy reduces flood damage.

From the first part, I find that census blocks in an SFHA area (conditional on having a non-zero

population) experiences a 7 percent decline in population after the disclosure policy. At the exten-

sive margin, disclosure lowers the probability of a block in the SFHA having any population by 0.01

percentage points, or 1.5 percent from the baseline value of 0.67. I further show that these effects

are driven by diverted in-migration (and resulting suppressed development) rather than active out-

migration from SFHA areas. In contrast, I find a very small effect of the disclosure policy on flood

insurance purchases: the probability of having a positive number of insurance policies in a commu-

nity increases by 0.003 percentage points (or 0.4 percent) on the extensive margin, while insurance

counts per housing unit decreases by 2 percent on the intensive margin. Investigating these two re-

sponse channels is important because they have different implications for flood damage. That is,

while choosing a safer location to live would reduce the probability of flooding, buying flood insur-

ance would simply redistribute income from the “dry state” to the “flooding state” without necessar-

ily affecting the probability distribution (Ehrlich and Becker 1972).

From the second part, I find that the disclosure policy reduces the expected probability of having

any flood damage at the community level by 2.3 percentage points (or 31 percent of the baseline

mean). To show this, I first estimate a non-parametric flood damage function—a mapping between

flood size and damage—using community-level flood history and damage data. Then, I estimate

the causal effect of the disclosure policy on the damage function and find that the slope of the func-

tion is substantially flatter after the policy. This analysis further reveals that the disclosure effect is

disproportionately larger in communities with higher treatment intensities.

This paper contributes to four different bodies of literature. First, it is related to prior studies on

factors that mitigate damage from climate change. While earlier studies primarily focus on technol-

ogy as a driver of adaptation (Miao and Popp 2014, Barreca et al. 2016, Burke and Emerick 2016),
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I focus on the role information can play in aligning private incentives with socially desirable out-

comes. A recent paper by Fairweather et al. (2023), which experimentally show that Redfin users are

less likely to purchase a home with flood risk upon receiving flood risk information, is an important

exception. I complement Fairweather et al. (2023) with (1) a higher external validity and (2) the

ability to estimate changes in the flood damage from information provision.

Second, I contribute to the literature on the role of government in shaping household adaptation

behaviors (Kousky et al. 2006, 2018, Gregory 2017, Peralta and Scott 2020, Baylis and Boomhower

2022). Perhaps the closest papers conceptually are Baylis and Boomhower (2021) and Ostriker and

Russo (2023), which show how building-code policies can reduce wildfire damage or flood risk ex-

posure, respectively. A key difference is that the policies studied by these papers directly mandate

adaptation, whereas disclosure policies studied in this paper encourage voluntary adaptation such as

choosing safer places to live.

Third, and more broadly, I build on earlier work on the impacts of flood risk on the housing mar-

ket (Hallstrom and Smith 2005, Pope 2008, Bin and Landry 2013, Bosker et al. 2019, Muller and

Hopkins 2019, Gibson and Mullins 2020, Hino and Burke 2021, Bakkensen and Barrage 2021). While

most prior studies focus on understanding how changes to flood risk information or beliefs affect

housing prices, I study their impacts on flood damage.3 Tracing the effect of flood information up

to the damage amount is important because while housing price changes, in general, reflect transfers

between homebuyers and sellers, a reduction in flood damage enhances social welfare.

Finally, I contribute methodologically by constructing a novel measure of flood exposure, which is

a critical step in identifying climate change effects (Hsiang 2016). My approach leverages hydrolog-

ical measures of flood intensity, allowing me to document flood events objectively for a wide range

of causes including rainfall, snow melt, or storm surge. My measure complements existing ones that

specialize in capturing the impacts of rainfall or hurricanes (Strobl 2011, Davenport et al. 2021).

The paper proceeds as follows. Section 2 provides background on the Home Seller Disclosure Re-

quirement and the Special Flood Hazard Area. Section 3 details the data sources and provides some

summary statistics. Section 4 presents estimation results on household responses while Section 5

shows the disclosure policy effect on flood damage. Section 6 concludes.
3For example, Hino and Burke (2021) use flood map updates as the main source of information shock and test if

the housing market efficiently prices flood risk. While they focus on the price effect, I study household responses to the
information shock—which provide an explanation for price adjustments—and resulting change in flood damage.
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2 Background

2.1 Home Seller Disclosure Requirement

Publicly available Flood Insurance Rate Maps contain the information homebuyers need to deter-

mine whether a property is located in an SFHA. Furthermore, the Flood Insurance Reform Act of

1994 requires the purchase of flood insurance as a condition for federally-backed mortgage approval

for properties in SFHAs, which should inform homebuyers of the associated flood risk. However, com-

pliance with the flood insurance mandate is far from perfect (Tobin and Calfee 2005, Michel-Kerjan

2010, GAO 2021, Wagner 2022) and prior work shows homebuyers do not have a good understanding

of the flood risk they face (Chivers and Flores 2002, Pope 2008, Bin and Landry 2013). A disclosure

on flood risk could be a useful apparatus to address this information gap.

Disclosure content. A statutory disclosure requirement mandates that home sellers provide buyers

with a detailed account of known material defects in the listed property by filling out a standard-

ized form. Importantly, the disclosure requirement is not exclusively about flood risk. As Appendix

Figure D.1 illustrates, a typical form covers a wide range of property conditions including structural

issues (e.g., problems with walls) and surroundings (e.g., natural hazards such as flood risk).4

The exact language of disclosure on flood risk varies slightly from state to state, but some combina-

tion of the following three questions usually appears: whether a property is in the SFHA; whether a

property had flood damage history; and whether a property has flood insurance.5 Because properties

on the SFHA are more susceptible to flooding, these questions are highly correlated. Indeed, flood

insurance policy and claims data that I acquired through FOIA show that 71 percent (75 percent)

of the claims (flood insurance policies) are from properties in the SFHA. Therefore, irrespective of

the language, disclosure is likely to raise homebuyers’ flood risk awareness for properties in SFHAs

relative to those outside.

Disclosure background and determinants of policy adoption. Traditionally, homebuyers were ex-
4Since the disclosure delivers a bundle of information, discerning treatment mechanism can be challenging especially

when there is positive correlation between flood risk and other property defects. In Appendix Table D.1, I demonstrate
that properties in tracts with SFHAs are notably newer compared to those in tracts without SFHAs. As property
defects typically emerge over time, this table suggests that SFHA properties are less prone to issues, implying that the
disclosure policy’s impact on flood-related outcomes stems from flood risk information.

5As of 2021, 5 states ask just the first question about the SFHA status, 15 states ask about SFHA status and past
flood experience, and 4 states ask all three questions. MI and TN ask about the latter two only.
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Disclosure Start Year

1992 1993 1994 1995 1996 1998 1999 2002 2003 No Disclosure

Figure 2.1: The Disclosure Requirement Implementation over Time

pected to practice caution regarding property defects (“caveat emptor” or “let the buyer beware”

doctrine). However, due to increasing consumer protectionism and public awareness of environmental

and health concerns, state courts began holding listing agents accountable for incomplete disclosures

(Weinberger 1996, Lefcoe 2004). In response, the National Association of Realtors issued a resolution

in 1991 urging state associations to develop and support legislation regarding the statutory disclosure

requirement in an effort to deflect potential liability to sellers (Tyszka 1995, Washburn 1995).

Consequently, between 1992 and 2003, 26 states in the contiguous US (excluding DC) adopted a

disclosure requirement with an explicit question on flood risk while the remaining 22 states never

adopted such a requirement (Figure 2.1). In Appendix B, I show that (1) the 22 never-adopted

states are different on demographic, economic, and political characteristics from the 26 ever-adopted

states and (2) such a difference does not appear in the early vs. late adopting states comparison.

Given these observations, I leverages differences in implementation timing, which reflects the timing

of the change in the state court’s ruling (Roberts 2006), when employing panel regression models.

It is also worth pointing out that five of the 22 non-disclosure states adopted a variant of a home

seller disclosure mandate, although it does not have a question on flood risk.6 These “placebo” states

are useful for checking the robustness of the main results.
6For details regarding the extent of disclosure in these states, see the following. Idaho: 1994 Ida. 55-2508 (1994),

Maine: Title 33 Section 173 (1999), Minnesota: CHAPTER 306-—S.F.No. 2697 (2003), New Hampshire: NH.
Rev. Stat. Ann. § 477:4-c (1994), and Virginia: VA. CODE ANN. §§ 55.1-704 (2005).
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Does the disclosure requirement matter? Despite potential penalties for imperfect compliance, the

disclosure requirement’s effectiveness in raising homebuyers’ flood risk awareness remains uncertain

due to possible inaccuracies in information provided by sellers or buyers’ failure to process the new

information. While I cannot observe homebuyers’ perceptions of flood risk directly, in Appendix C,

I find disclosure reduces housing prices in SHFA’s by 4.5 percent. The magnitude coincides with

existing estimates of the effect of flood risk information on housing prices (e.g., see Hino and Burke

(2021)), and it suggests that at least some information is being conveyed to buyers through the dis-

closure requirement. The extent to which this information translates to risk-mitigating behaviors is

uncertain and the focus on my empirical work below.

2.2 Flood Map and Special Flood Hazard Area (SFHA)

The SFHA, designated by an official flood map for potential inundation by a 100-year flood, holds

significant importance as it frequently serves as a reference point for flood risk information in disclo-

sure requirements (FEMA 2011). The SFHA boundary is determined by comparing water surface

elevation with the ground elevation under a 100-year flood scenario (FEMA 2005), which implies

that flood risk, which is a function of land contour, is continuously changing even at the SFHA bor-

der (Noonan et al. 2022). This gives rise to the spatial discontinuity design at the SFHA border

because the disclosure form treats flood risk discontinuously for two areas on different sides of the

border with possibly very similar true flood risk.

It is also worth noting that these maps are updated occasionally, albeit much less frequently than

legally mandated (DHS Office of Inspector General 2017), which could potentially confound the dis-

closure effect. Throughout empirical exercises, I show that my results are robust to the map updates.

The jurisdiction of each flood map is a NFIP “community”. These communities are local politi-

cal entities comparable to a US census place. Appendix Figure D.2 shows a sample flood map from

a part of the Borough of Stonington, CT, and similar to this place, a typical entity contains both

SFHA and non-SFHA areas within it. Indeed, Appendix Figure D.3 illustrates that there is sub-

stantial variation in the fraction of area covered by an SFHA for communities in the sample, which

suggests that the intensity of disclosure treatment varies across communities.
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3 Data Sources and Descriptive Statistics

Demography and flood insurance. I collect census-block-level population and occupancy data from

the 1990, 2000, 2010, and 2020 decennial censuses. To account for changing block boundaries and

resulting one-to-many matches across different decennial census years,7 I calculate the weighted sum

of count variables using interpolation weights from the NHGIS block-to-block crosswalk (Manson

et al. 2022).8. This creates a geographically standardized time series. Data on the number of flood

insurance policies at the NFIP community level come from FEMA for 1978–2008.9

Flood damage. I use damage records from the flood insurance adjuster’s report. The damage

amount is defined by the actual cash value—a replacement value net of depreciation (FEMA 2014). I

observe individual property level damage with loss date, community ID, and building type. I restrict

the sample to damage records from single-family houses that has sustained the largest flood event for

a given community-year. Then I collapse the data to the community by year level to match it with

the annual maximum flood event data.

Flood history. The measurement of climate exposure is a critical methodological step in identifying

climate effects on economic outcomes (Hsiang 2016). In the domain of floods, two different measures

have been widely used. The first approach measures flood intensity using outcome variables such as

economic cost, which suffers an endogeneity problem by construction (for a review, see Felbermayr

and Gröschl (2014)). The second approach uses a meteorological measure, but only for a subset of

events such as a hurricane or rainfall (Strobl 2011, Hsiang and Jina 2014, Deryugina 2017, Davenport

et al. 2021). Given that rainfall alone explains just one-third of cumulative flood damage in the US

(Davenport et al. 2021), such an approach cannot capture the entire scope of floods.

To overcome these limitations, I construct hydrology-based flood history dataset at the community

level using daily water volume records from over 3,000 USGS and NOAA stations located within my

26-state sample (Milly et al. 2002, Mallakpour and Villarini 2015, Slater and Villarini 2016). Us-

ing this approach, flood size is described by the recurrence interval (Task Committee on Hydrology
7For instance, block G06000104003003006 in 2000 is matched to five different blocks in 2010 ending in 3010, 3011,

3017, 3020, and 3028.
8Interpolation weights represent the expected proportion of the source block’s counts (e.g., population or housing

units) located in each target block (Manson et al. 2022)
9I thank Justin Gallagher for graciously sharing these data.

9



Handbook of Management Group D of ASCE 1996): the expected number of years for a flood of the

same magnitude to come back for a given site. For instance, a 10-year flood is the size of a flood that

would happen on average once every 10 years, which would be less severe than a 100-year flood that

is large enough to happen only once in 100 years on average. An idea behind this approach is similar

to model extreme temperatures as deviations from local mean temperatures.

Practically speaking, I construct the data in four steps. First, I estimate a gauge-specific flood

frequency distribution by fitting the Log-Pearson III distribution using the annual peak flow records

of each gauge. Second, I convert the daily maximum discharge volume at each gauge into quantiles

of the fitted distribution from step 1. Third, I translate the quantiles into recurrence intervals and

take the maximum recurrence interval for each year. 10 Finally, I match each community to the three

nearest gauges and calculate community-year-level flood size by taking the inverse-distance weighted

average of three closest gauges’ recurrence intervals. More details on the flood data construction

procedure and summary statistics are in the Appendix A.1.

Other data sources. To determine the SFHA status of geographic units such as census block, I use

the Q3 map—the first generation of a digitized flood map—that captures flood risk as of the mid-

1990s for over 1,300 counties (FEMA 1996). Also, the primary data source to track the disclosure

requirement legislative history is the Nexisuni database. I cross-validate this database with prior

studies on the disclosure requirement (Washburn 1995, Pancak et al. 1996, Lefcoe 2004) and reports

from the National Association of Realtors (National Association of Realtors 2019).

Summary statistics. Table 3.1 shows summary statistics for key independent variable: flood size;

and dependent variables: population, flood insurance policy counts per housing unit, and flood dam-

age per housing unit. Population figures are for the census blocks within the optimal bandwidth

(more detail in Section 4). The last three values are for the NFIP communities in my sample.

A notable aspect of the data is the high prevalence of zeros among the dependent variables. For

instance, 27 percent of observations for the block population and counts and 17 percent of the obser-

vations of flood insurance policy counts are zeros. For the community-level flood damage per housing

unit variable, 95 percent of observations are zero. The high prevalence of zeroes for these variables is
10The recurrence interval for quantile q is 1

1−q
. For instance, a discharge volume of the 90th percentile, which means

it is the 90th highest among 100 yearly maximum observations, corresponds to a 10-year flood.
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Table 3.1: Summary Statistics for Key Variables

Variables Min. Q25 Median Mean Q75 Max. N

Census Block Population 0 0 10 34.6 40 7,597 1,484,709
NFIP Policies Per Housing Unit 0 0.001 0.005 0.029 0.018 6.53 400,919
Flood Damage Per Housing Unit 0 0 0 5.8 0 23,991 505,383
N of 10-Year Floods (For 20 Years) 0 1 2 2.18 3 15 8,194

consistent with external sources (details are in Appendix A.2).

In addition, these variables also exhibit substantial skewness (long and thin right tails), as the

difference between median and mean values suggests. To account for this, I follow Chen and Roth

(2022) and estimate extensive and intensive margin effects separately for each dependent variable.

This approach resonates with a hurdle or two-part model, which is used extensively in modeling

health expenditures characterized by a similar distribution (Mullahy and Norton 2022).

Finally, the last row of Table 3.1 indicates that an average community experiences 2.18 10-year

flood events over a 20-year period. This is close to the expected value of 2.0.

4 Responses to the Disclosure Requirement

In this section, I investigate how homebuyers respond to flood risk information by estimating the

impact of the disclosure policy on geographic distribution of the population and flood insurance take

up. Investigating both responses is important because they have starkly different implications for

flood damage—responses along the first margin can reduce total flood risk whereas responses along

the second margin simply redistribute income from the “dry state” to the “flooding state” without

necessarily affecting exposure (Ehrlich and Becker 1972).11

4.1 Estimation Framework

Spatial Discontinuity. Yes-or-no check box questions on disclosure forms create a spatial discontinuity

in flood risk information, which allows me to disentangle the information effect from the true flood

risk effect. However, a potential concern is that other policies such as flood insurance requirements
11Ehrlich and Becker (1972) suggests that, when self-protection is financially rewarded, self-protection and mar-

ket insurance are complements. However, as Kousky (2019) points out, the NFIP premium is heavily subsidized and
the NFIP premium structure is too coarse to account for all self-protection measures. Wagner (2022) also finds that
substitution between self-protection (property elevation) and flood insurance is prevalent in the flood insurance market.
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also change at the border, which could confound the disclosure effect. To account for this, I leverage

a difference-in-discontinuity approach as equation (1) following Grembi et al. (2016).

Ybst =δ0 + δ1Xbs + δ2Dbs + δ3Xbs ∗Dbs+

Tst[δ4 + δ5Xbs + δ6Dbs + δ7Xbs ∗Dbs] + ϵbst

(1)

Ybst is an outcome variable such as the probability of having any population, log of population con-

ditional on having non-zero population, or the vacancy rate in block b in state s in time t.12 Xbs is

the distance between a block border and the closest SFHA border in meters (negative if in a non-

SFHA area),13 Dbs = 1 if Xbs > 0 is a treatment group indicator variable, and Tst = 1 if t > T ∗
s

is a post-period indicator variable, where T ∗
s is the policy change date for s. δ6 captures the impact

of the disclosure policy for blocks located in close proximity to the SFHA border. To estimate δ6, I

first estimate the optimal bandwidth for each outcome variable. Then, I estimate equation (1) using

blocks within the optimal bandwidth (Calonico et al. 2014, Cattaneo et al. 2019).14 For states that

have implemented disclosure policies between 1990-1999 (2000-2009), I use the 1990, 2000, and 2010

(2000, 2010, and 2020) decennial census.

A potential concern of using a geographic area such as a census block (namely, a polygon) for

a spatial discontinuity design is that the distance from a block to an SFHA border may not well

defined, especially when a block contains an SFHA border within it. While this might be a serious

problem for larger geographical units such as tracts, it will be less of a problem for blocks, which

is the smallest census geographic unit (see Appendix Figure D.4): the median size of blocks in my

sample is just 0.009 square miles, and 83 percent of blocks are entirely within or outside an SFHA. I

remove the 17 percent of blocks that contain SFHA borders from the analysis.

Staggered Adoption. Flood insurance policy counts are observed at the community level. As a

typical community contains both SFHA and non-SFHA areas (Appendix Figure D.2 and D.3), the

distance to the nearest SFHA border is not defined. Thus, I employ a triple difference design using
12A property is considered vacant if no one is residing in the unit at the time of enumeration unless its occupants are

only temporarily absent (US Census Bureau 2000).
13Xbs is approximated by taking the difference of (1) the distance between block centroids and the closest SFHA

border and (2) a block diameter.
14I estimate the mean squared error optimal bandwidth for 2000 and 2010 respectively and take the average follow-

ing Grembi et al. (2016). I ignore 1990 and 2020 because these years have only a subset of the states in the sample.
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equation (2). Here, Ymstd denotes outcome variables on NFIP for community m in state s in year t

in stack d. Hmd is an indicator variable equal to one if a community has an above-median fraction

of the area covered by an SFHA, which proxies for the treatment intensity. Istd is a post disclosure

indicator and Dstd is a treatment group indicator. α1 captures the disclosure effect.15

log(Ymstd) = α0HstdIstd + α1HmdDstdIstd + ωstd + ψmd + ϵmstd (2)

As the subscript d indicates, I use the stacked approach to estimate the policy impact using clean

controls (Cengiz et al. 2019, Brot-Goldberg et al. 2020). This approach alleviates concerns about

potential biases in the staggered adoption design (Goodman-Bacon 2021). As I exploit the timing of

the disclosure requirement for identification, not-yet-treated states form the control group.

To construct the data stack, I first keep each state’s flood insurance data for seven years before

and after the policy change to prevent composition changes.16 Each stack consists of communities

in the treated states, which adopted the disclosure policy in year t∗, and communities in the control

states, which adopted the policy in t̃ > t∗.17 I drop observations from the control states for t >= t̃

because they are no longer “not-yet-treated”. Equation (2) also include ωstd, the state × time ×

stack fixed effect to account for year-specific state level shocks and a community × stack fixed effect

ψmd, which captures unobserved community characteristics. Including these fixed effects ensures that

the comparisons are made within each stack. Throughout the analysis in Section 4, standard errors

are clustered at the state level, which corresponds to the level of disclosure treatment.

4.2 Findings

Self-protection. Table 4.1 reports the impact of the disclosure policy on the population over a period

up to 20 years after the policy change. In column (1), I find that the disclosure reduces the proba-

bility of having any population in an SFHA block by 0.01 percentage points relative to a non-SFHA

block (or 1.5 percent of the baseline value 0.68). In column (2), I limit the sample to blocks with

non-zero population and find that the disclosure reduces population in a populated SFHA block by 7
15Other terms in a standard triple difference model is subsumed by the fixed effects.
16The data from 1978–2008 are sufficient to cover a 15-year window for policy changes in all states except Louisiana,

which implemented its policy in 2003, leaving just six post-policy years for analysis.
17Stack refers to data that is created for a specific treatment year (or a cohort year). A state belongs to either the

treatment or control group depending on the stack. For instance, PA and CT, which changed their policy in 1996 are in
the “treatment group” in a stack for t∗ = 1996. The two states belong to the “control group” when t∗ < 1996.
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Table 4.1: Effect of Discosure Requirement on Net Population Flow

Prob. of Any
Population

Log
Population

Vacancy
Rate

(1) (2) (3) (4)
SFHA × Post −.011∗∗∗ −.073∗∗ .014∗∗∗

(.003) (.030) (.004)
High SFHA × Disclosure × Post −.009

(.006)
Avg D.V. 0.675 0.095
State × Year × Stack FE X
Community × Stack FE X
Bandwidth 138 301 262
Num. obs. 1484709 1918077 499075 1701999
Note: Columns (1)–(2) and (4) are estimated based on equation (1) using the decennial census block-level data
in 1990, 2000, 2010, and 2020. Columns (3) is estimated based on equation (2) using community-level popula-
tion data. Standard errors are clustered at the state level. ∗p < 0.1; ∗∗p < 0.05; ∗∗∗p < 0.01.

percent relative to a non-SFHA block. Taking these extensive and intensive margin effects together,

the policy discourages both in-migration into SFHA blocks with existing population and new devel-

opments in previously uninhabited SFHA blocks.

Using equation (2), I show in column (3) that the effect of the disclosure policy on the community

level population is only –0.9 percent—nearly an order of magnitude smaller than in column (2).18

This is plausible because, as Appendix Figure D.3 shows, a typical community has large non-SFHA

land areas and thus flood risk can be easily avoided by within-community adjustments. Such local

adjustments are consistent with prior research (Noonan and Sadiq 2019).

In column (4), I report that the disclosure increases the vacancy rate for the blocks in an SFHA

from 0.095 to 0.109. This finding suggests that after the disclosure, selling properties in the SFHA

becomes harder (or takes longer) and a larger share of them are vacant at any given time.19 This

finding is consistent with evidence that people migrate away from negative environmental conditions,

although the extent of migration here is localized (Banzhaf and Walsh 2008, Boustan et al. 2012,

Hornbeck 2012, Hornbeck and Naidu 2014).20

Figure 4.1 (a) graphically illustrates the effect in column (2) of Table 4.1. The horizontal axis is
18I use the decennial census to linearly interpolate annual community population.
19Indeed, New Orleans, one of the highest flood-risk areas in the nation, has the highest vacancy rate among the 75

largest MSAs in the US (Fudge and Wellburn 2014).
20When the housing supply is fixed, the disclosure will not affect the population distribution (market will clear via

price adjustment alone). However, with an upward-sloping housing supply curve, which is likely to be the case given
the time frame in Table 4.1, the disclosure will impact both the price and population distribution.
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Figure 4.1: The Effect of Disclosure on Population. These figures illustrate difference-in-discontinuity esti-
mates for the log of block population for the (a) disclosed and (b) placebo states. The discontinuity at the
threshold (dashed vertical line) corresponds to the δ6 term in equation (1). Dependent variables come from
the decennial census block-level data in 1990, 2000, 2010, and 2020. The running variable is defined by the
distance between a census block and the nearest SFHA border.

the distance between a block and the nearest SFHA border. The blocks within an SFHA are pre-

sented on the right-hand side of the border (the vertical line at 0), and the blocks outside of an

SFHA are presented on the left-hand side. The solid lines represent the regression fit from equa-

tion (1) and the change in the logged population between the pre and post disclosure periods for the

non-SFHA blocks is normalized to 0. I also overlay a scatterplot, which shows the difference in log

population between pre and post treatment periods for each distance bin.

The figure indicates there is a sharp drop in the log population for SFHA blocks relative to the log

population of non-SFHA blocks at the SFHA boundary. Visually, the discontinuous jump is approx-

imately 0.07 log points, matching the estimate in column (2) of Table 4.1. Note, the regression line

fits the scatter plot tightly, which suggests that the choice of functional form for the running variable

is unlikely to have a substantial impact on the estimates.

To investigate the mechanism behind population adjustments, in Figure 4.2 (a), I plot the average

population for census blocks in event time by the SFHA status. Here, event time is defined as -1 for

pre-treatment periods, 0 for post-treatment periods up to 9 years, and 1 for post-treatment period of

10–19 years. The figure illustrates that the relative population of SFHA blocks is decreasing primar-

ily due to an increasing population of non-SFHA blocks (blue dotted lines) rather than a shrinking

population of SFHA blocks (red solid lines). Similarly, in panel (b), I find a rapid expansion of hous-
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Figure 4.2: Population and Housing Unit Trends in Event Time. These figures plot the (a) average population
and (b) average number of housing units for SFHA and non-SFHA blocks within the optimal bandwidth in
event time. Event time is defined as -1 for pre-treatment periods, 0 for post-treatment periods up to 9 years
after the policy change, and 1 for post-treatment period of 10–19 years after the policy change.

ing units in non-SFHA blocks (blue dotted lines) and a stagnation for SFHA blocks (red solid lines).

These empirical patterns suggest that the population adjustments reflect diverted in-migration (and

resulting suppressed development) rather than active out-migration from SFHA areas, which is plau-

sible given that the disclosure requirement provides new information to homebuyers rather than to

homesellers or existing homeowners.

Two potential concerns regarding the validity of the results merit attention. First, as previously

noted, location adjustments in large part appear local, suggesting a potential strategic sorting of

households at the border. This not only challenges an underlying assumption in regression disconti-

nuity design that individuals lack control over treatment status (Bosker et al. 2019), but also raises

doubts about the deterrence effect of the disclosure policy. If diverted buyers opt for properties just

outside the SFHA border, their exposure to flood risk essentially remains unchanged.

Second, while my difference-in-discontinuity design controls for time-invariant confounders, con-

current policy changes are still a threat to identification. Although, as discussed in Section 2.1, com-

pliance with the flood insurance mandate was far from perfect, especially during the prime sample

period of this study, one might worry that there have been changes in the enforcement of the flood

insurance purchase requirement over time. Additionally, updates to flood maps could have served as

a competing source of informational shock (Weill 2021, Hino and Burke 2021).

Per the first issue, I present three sets of results. First, I repeat my analysis using a doughnut
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difference-in-discontinuity approach that excludes blocks very close to the border. The idea is that

if there is endogenous sorting near the border, the treatment effect may change when those observa-

tions are excluded (Cattaneo and Titiunik 2022). In Appendix Table D.3, I show that the estimates

are similar even if I remove blocks that are within 20 or 40 meters from the border.21 Second, in

Appendix Figure D.6, I show that the policy effect does not diminish even if I expand the bandwidth.

Finally, in Appendix Figure D.7, I repeat my analysis using a progressively farther away control

blocks while holding treated blocks fixed (to those within the optimal bandwidth). In particular, I

estimate equation (1) using control blocks that are within the distance of (r − 1) × optimal bandwidth

and r × optimal bandwidth for r ∈ {1, 2, 3, 4, 5}. Again, Appendix Figure D.7 shows that disclosure

policy reduces population and increases vacancy rate. These findings suggest strategic sorting is not

prevalent and deterred homebuyers choose locations that meaningfully lower flood risk.22

To address the second concern, I conduct three robustness checks. First, I allow time-varying dis-

continuity at the SFHA border to more directly control for confounding policy changes.23 In Ap-

pendix Figure D.8, I show that allowing for time varying discontinuity does not change the previ-

ous conclusion. For a wide range of bandwidth choices, the effect size is much larger in magnitude

(although with less precision due to a large number of parameters estimated) than the preferred

specification in equation (1). Second, I use the five placebo states that have implemented disclosure

policies without a question about flood risk. If my findings are driven by concurrent policy changes

rather than the disclosure of flood risk, I would expect to find similar results in the placebo states.

In Appendix Table D.2, I repeat Table 4.1 for placebo states and find no evidence of a reduction in

population or an increase in the vacancy rate in the placebo states (Figure 4.1 (b) provides corre-

sponding visual evidence). Similarly, Appendix Figure D.9 shows that my estimates are either null

(for the vacancy rate) or positive (for population) for a wide range of bandwidth choices. Third, in

Appendix Table D.4, I reproduce Table 4.1 after removing geographic units that have experienced
21Consistent with this, Appendix Figure D.5 shows that the distribution of running variable is generally smooth.

A discrete change at the border may arise from other flood policies but such a level difference will cancel out by the
difference-in-discontinuity design. Note, the number of observation monotonically decreases as the distance to the
border increases because only blocks with an overlap with flood maps are in the sample.

22These findings also rules out the Stable Unit Treatment Value Assumption (SUTVA) violation, which could
overestimate the effect size in Table 4.1.

23For this, I estimate Ybst = δ0 + δ1Xbs + δ2Dbs + δ3Xbs ∗ Dbs +
∑

t={2000,2010,2020} Gt ∗ [δt
0 + δt

1Xbs + δt
2Dbs + δt

3Xbs ∗
Dbs] + Tst[δ4 + δ5Xbs + δ6Dbs + δ7Xbs ∗ Dbs] + ϵbst. Here Gt is an indicator that takes 1 if time period is in t. Importantly,
Gt ∗ δt

2 for t = {2000, 2010, 2020} (1990 is omitted as baseline) allows period-specific discontinuities. The rest of notations
follow equation (1) and coefficient of interest is δ6 as before.
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flood map updates over the sample period and find that the results barely change.24

While choosing a safe location represents an extensive margin self-protection strategy, previous

studies consider property elevation as a potentially important intensive margin responses (Mobley

et al. 2020). Although data limitations do not allow me to analyze this possibility directly, prop-

erty elevation is unlikely to be a widely adopted self-protection measure because of its high cost. For

instance, the median cost of elevations through the FEMA mitigation program (between 2008 and

2013) is $166,000 (National Research Council 2015), which is over 50 percent of the average property

value in the SFHA area ($327,171). In addition, elevation takes at least several months to complete,

which means that the foregone use value is also substantial. This assessment is consistent with Mont-

gomery and Kunreuther (2018), which finds that property elevation in general is rarely cost effective.

Market Insurance. In Table 4.2 column (1), I show the disclosure policy increases the probability of

having at least one flood insurance policy in high-risk communities relative to low-risk communities

by 0.003 percentage points (or 0.4 percent from the baseline of 0.82). Column (2) indicates the in-

tensive margin effect of the disclosure policy on the number of insurance policies per housing unit is

also small at –2 percent. Given the point estimates, flood insurance does not seem to be the primary

margin homebuyers respond to the disclosure policy.

In Appendix Figure D.10, I plot the differential impact of disclosure policy on the probability

of having flood insurance for high-risk communities in event time using an event study version of

equation (2). The estimated coefficients show no pre-trend and a small increase in the probability of

flood insurance take up after the policy change. Simple average of estimated coefficients in the pre

vs. post treatment event time suggests that the magnitude of policy effect is 0.007, which is larger

than column (1) in Table 4.2 yet still small. Further, in Appendix Table D.5, I reproduce Table 4.2

after removing communities that have experienced map update during the sample period and find

that the result does not change.

Why do homebuyers engage in self-protection despite the option to buy flood insurance? One

possibility is that the cost of location adjustment is substantially lower for many homebuyers espe-

cially compared to households not intending to move. Indeed, Zumpano et al. (2003) documents that
24To generate the list of communities that have experienced map updates, I use the “L_Comm_Revis” layer from

the National Flood Hazard Layer from FEMA (FEMA 2019). 7% of blocks in my sample are located in communities
that had any map update during the sample period.
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Table 4.2: Effect of Discosure Requirement on Flood Insurance Take-Up

Prob. of Any
Insurance

Log Insurance
Per Housing Unit

(1) (2)
High SFHA × Disclosure × Post .003 −.024

(.007) (.030)
Avg D.V. 0.823
State × Year × Stack FE X X
Community × Stack FE X X
Num. obs. 400919 329863
Note: This table is produced from equation (2) using community-level NFIP data. Stan-
dard errors are clustered at the state level. ∗p < 0.1; ∗∗p < 0.05; ∗∗∗p < 0.01.

homebuyers actively search across alternatives, and an average buyer physically visits 17 properties

before closing. Moreover, the benefit of flood insurance could be insufficient. For instance, the NFIP

offers incomplete insurance with coverage capped at $250,000. Further, a flood could negatively af-

fect an individual’s health or employment status and disrupt daily life, all of which are not covered

by flood insurance (Kahn 2005, Deryugina 2017, Lee et al. 2023).

5 The Effect of the Disclosure Requirement on Flood Damage

5.1 Estimation Framework

For a flood of a given size, how does flood damage change after the disclosure requirement? To an-

swer this question, I estimate a damage function, which is a mapping between flood size and damage,

and show how the functional relationship changes due to the policy. Damage functions have been

widely used in the economics literature to understand the relationship between heat and economic

outcomes.25 Surprisingly, there has been limited attention directed towards damage functions specific

to floods, despite the substantial disruptions they cause. This is partly because objective measure-

ment of flood size is difficult. I overcome this challenge by constructing a hydrology-based flood

history dataset described in detail in Appendix A.1.

Per Housing Unit Damage =
∑

k

[αk
1F

k + αk
2F

kD] (3)

25For a review, see Dell et al. (2014), Carleton and Hsiang (2016), and Auffhammer (2018).
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Before describing the estimation procedure, it is useful to conceptualize the damage function. Con-

sider equation (3), where the dependent variable is flood damage per housing unit, D is an indicator

variable for the treated (i.e., disclosed) group assignment and F k is an indicator variable equal to

1 when the annual maximum flood size is in flood size bin k where k ∈ {2-10, 10-20, 20-30, 30-40,

40-50}.26 Equation (3) follows a non-parametric approach of Barreca et al. (2016), which lets the

data rather than the functional form assumption, determine the shape of the damage function. In

my models, flood sizes between 1–2 serve as the baseline omitted category. Thus, αk
1 is the additional

damage per housing unit when a community in the control group experiences a flood of size k as

opposed to a flood size between 1–2. αk
2 allows a different slope for the treated group for flood size k.

There are three points to discuss regarding F k. First, I use the annual maximum flood size as a

proxy for flood exposure for a given community-year. While this means smaller floods in the same

community and year are ignored, this is unlikely to be a practical concern because the majority of

the community-years in the dataset had just one flood (Appendix Figure A.3 (c)). Moreover, after

restricting attention to floods of size over 10 or larger, which cause disproportionately large damage,

over 90 percent of community-years have only one incident (Appendix Figure A.3 (d)).

Second, I focus on flood sizes between 1 and 50 because larger floods are frequently accompanied

by interrelated perils, which cause substantial measurement errors (Kron et al. 2012). Further, as

shown in Appendix Figure A.3 (b), the frequency of flood events reduces exponentially as flood size

increases, making it difficult to non-parametrically identify statistical relationships for very large

floods. Appendix Table A.2 shows that the threshold for flood sizes 10 and 50 are closely matched to

the threshold for “moderate” and “major” floods defined by the National Weather Service, indicating

that the chosen flood sizes cover a wide enough band to capture floods of different severity. Third,

the assumption behind binning is that the damage per housing unit is identical within each k. While

flood sizes of 41 and 49, for example, might have a different effect in reality, I choose a bin size of 10

to strike a balance between flexibility and precision (Barreca et al. 2016).

Per Housing Unit Damage =
∑

k

[βk
1F

k + βk
2F

kI + βk
3F

kD + βk
4F

kID] (4)

Equation (4), which mirrors a canonical difference-in-differences model, shows how equation (3)
26For instance, k = 40 − 50 means the flood size is of the magnitude that would be expected every 40–50 years. For

more details see Section 3 and Appendix A.1.
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changes when the post disclosure indicator I is introduced. The coefficient for the interaction term

(βk
4 ) captures the treatment effect.

Ymtd =
∑

k

[βk
1F

k
mtd + βk

2F
k
mtdImtd + βk

3F
k
mtdDmtd + βk

4F
k
mtdImtdDmtd] + θmd + ωtd + ϵmtd (5)

For estimation, I use equation (5). Ymtd is either an indicator variable for positive flood dam-

age in community m (extensive margin), or log(Per Housing Unit Damage) conditional on having

positive damage for community m (intensive margin), in year t for data stack d.27 While I report

both the extensive and intensive margin effects, an emphasis is given to the former due to greater

generalizability—only a small fraction of communities experience repeated damage—and higher

statistical power. I also includes year × stack (ωtd) and community × stack (θmd) fixed effects, to

control for overall time trend and unobserved community characteristics. Similar to Section 4.2, I ex-

ploit the timing of the disclosure requirement for identification and thus not-yet-treated states form

the control group. Also, equation (5) is a stacked difference-in-differences model (i.e., ignoring dif-

ferences in treatment intensity), a choice made for tractability, although the differences in treatment

intensity margin (i.e., fraction of the area covered by an SFHA) is exploited in estimating hetero-

geneous treatment effects. I use 20 years of observation for each state around the disclosure policy

change year.

Because the impact of natural disasters is not confined by administrative units, previous studies

on cyclone damage function have used spatial-HAC standard errors (Hsiang 2010). Following this, I

allow spatial correlation of up to 500 miles for inference (Newey and West 1987, Conley 1999), but I

also show that state-level clustering produces similar results.28

Before proceeding further, it is worth briefly discussing the difference between the damage function

of this paper and “depth-damage functions” from earlier engineering studies. As its name suggests,

the measure of flood size in these engineering studies is the water depth for an individual property

(Meyer et al. 2013). While useful for predicting property-level flood damage, this approach has two

limitations for estimating aggregate flood damage. First, by focusing on an individual property, it

does not directly take into account that a larger flood increases the number of affected properties. A
27Data stacks are constructed in a similar procedure described in Section 4.1.
28Weights in this matrix are uniform up to that cutoff distance. When the variance-covariance matrix is not positive-

semidefinite, I use eigendecomposition of the estimated variance matrix and convert any negative eigenvalue(s) to zero
following Cameron et al. (2011).
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detailed hydraulic study can overcome this issue, but most communities either lack access to them or

are reliant on outdated versions because of cost issues (FEMA 2005, Bakkensen and Ma 2020, Weill

2021). Second, and more importantly, it typically lacks the capability to account for adaptations at

the property level, which is likely to cause bias in the estimated damage function.29

I take a “reduced-form” approach to overcome these issues. By directly relating flood size to flood

damage at the community level, my approach can be applied even in areas without up-to-date hy-

draulic studies. Moreover, the community level damage metric factors in the number of properties

damaged and embeds the impact of any pre-existing adaptation measures.

5.2 Findings

In Figure 5.1, I plot the damage functions for the (a) control and (b) treatment groups using the

estimated coefficients from equation (5).30 For instance, β̂k
1 and β̂k

1 + β̂k
3 for each k are used to plot

the pre-treatment period damage functions for panel (a) and (b), respectively. Because the depen-

dent variable in Figure 5.1 is the probability of any damage, the estimated coefficients indicate the

additional probability of damage when the baseline flood (k=1–2) is replaced by a flood of size k.

Figure 5.1 allows visual inspection of the validity of the estimated damage function. To begin, I

first focus on the slope of this function, which reveals a monotonically increasing relationship be-

tween flood size and the probability of any flood damage. In subsequent panels (c)–(f), I test hetero-

geneity in the damage function for further assessment. That is, even when faced with floods of the

same size (as defined by community-specific recurrence intervals, which, heuristically, can be consid-

ered as deviations from local averages), communities with higher risk should exhibit higher levels of

damage.31 Indeed, I find that high risk communities in panels (c)–(d) (an above-median fraction of

the area covered by an SFHA) have much higher vertical levels and steeper slopes in comparison to

the low risk communities in panels (e)–(f).

Table 5.1 highlights the impact of the disclosure requirement on flood damage. For brevity, I only re-

port β̂k
4 from equation (5), but the full sets of coefficients are in Appendix Table D.6. In column (1),

29In theory, this issue can be addressed by (1) modeling how various defensive measures such as property elevation
or the use of waterproof building materials impact damage, and (2) collecting property level data on these defensive
measures. However, this approach is impractical due to limitations in modeling techniques and data availability.

30Appendix Figure D.11 reproduces Figure 5.1 with a 95 percent confidence interval.
31To illustrate this, consider two communities, A and B with starkly different risk profiles: A is entirely situated

within the SFHA while B lies outside the SFHA. In the event of a 100-year flood, the entire property in A would be
expected to be underwater (by the definition of SFHA), whereas B would remain unaffected.
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Figure 5.1: The Effect of Disclosure on the Damage Function. These plots illustrate estimated damage func-
tions (dep.var: probability of any damage) from equation (5). Panels (a)–(b) are damage functions for all
communities. Panels (c)–(d) and (e)–(f) illustrate the damage functions for high (above–median SFHA ratio)
and low (below–median SFHA ratio) flood risk communities, respectively. Appendix Figure D.11 reproduces
Figure 5.1 with 95% confidence intervals.
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Table 5.1: Effect of Disclosure Requirement on Flood Damage

Prob. of Any Damage
Per Housing Unit

Log Damage
Per Housing Unit

(1) (2) (3) (4)
Post × Disclosure (Size 2-10) −.039∗ −.056∗ −.021 −.063

(.023) (.030) (.015) (.325)
Post × Disclosure (Size 10-20) −.072∗ −.086∗ −.051∗ .189

(.039) (.050) (.029) (.189)
Post × Disclosure (Size 20-30) −.080∗∗∗ −.131∗∗∗ −.018 .170

(.029) (.038) (.031) (.562)
Post × Disclosure (Size 30-40) −.141∗ −.172∗∗ −.111 −.360

(.073) (.072) (.082) (.442)
Post × Disclosure (Size 40-50) −.197∗∗∗ −.339∗∗∗ −.054 −.425

(.055) (.061) (.068) (.540)
Annual Effect −.023 −.034 −.012 −.012

(0.009) (0.011) (0.008) (0.063)

Sample All High SFHA Low SFHA Damage > 0
Year × Stack FE X X X X
Community × Stack FE X X X X
Num. obs. 505383 242458 262925 22100
Note: The dependent variable in columns (1) to (3) is the probability of having any flood damage per housing unit.
Column (1) is from the entire set of communities while in columns (2) and (3), I repeat (1) using the subsample of
communities with different levels of risk exposure. Dependent variables in columns (4) is log transformed per housing
unit damage. Spatial-HAC standard errors that allow spatial correlation of up to 500 miles are estimated for inference.
∗p < 0.1; ∗∗p < 0.05; ∗∗∗p < 0.01.

I report the policy effect using all communities in my sample. The results show that the disclosure

requirement reduces the probability of having any flood damage per housing unit by 4–20 percentage

points for different values of k for the communities in the disclosed states relative to the ones in the

not-yet-disclosed states.32 The damage reduction effect can be verified visually as well: Figure 5.1

shows that in panel (a) (control), flood probability has substantially increased over time, whereas in

panel (b) (treated), it remains nearly identical.

Using equation (6), I summarize the coefficients in Table 5.1 into probability-weighted average

treatment effects. Note, because Pr(K = k) is the likelihood of flood occurrence for bin size k each

year and βk
4 is the change in probability of having damage, equation (6) can be interpreted as the

reduction in annualized loss probability due to the disclosure policy.33

∑
k

Pr(K = k) × βk
4 (6)

32For per housing unit damage, I divide community-year level damage using the housing stock in 1990.
33Since the flood size is defined by recurrence interval, the inverse of the size corresponds to P r(K = k). For in-

stance, the probability of having a flood of size 40–50 in a given year is 1
45 (45 is the median value of the bin).
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In Table 5.1 column (1), I report that the reduction in the annualized loss probability is 2.3 percent-

age points. When I compare this with the baseline of 7.4—average probability of having any damage

conditional on exposure to a flood of size 2 or larger—the effect size is a 31 percent reduction.

In columns (2) and (3), I split the sample into communities with above- and below-median frac-

tions of the area covered by an SFHA to investigate the heterogeneous treatment effects. Because

the disclosure policy targets properties in an SFHA, the policy effect should be driven by the high-

SFHA communities. Indeed, the reduction in the annualized loss probability is three times larger for

high-SFHA communities than low-SFHA communities. Figure 5.2 (a) further splits columns (2) and

(3) and presents the change in the annualized probability of having any damage for four groups of

communities with differential SFHA ratios, which clearly shows monotonically increasing magnitude

in the SFHA ratio.

Column (4) reports the intensive margin effect, where the dependent variable is the log of damage

per housing unit. Because the sample for this exercise is restricted to community-years with posi-

tive damage, the model is under powered. Still, I find suggestive evidence that the disclosure policy

reduces damage for communities with repetitive flood events.

Taken together, the disclosure requirement reduces flood damage in treated communities com-

pared to controls, primarily due to a higher damage increase in the control group. Appendix Figure

D.12 provides a potential explanation for this result by showing how population and housing unit

within the SFHA have changed over years by the treatment status. For this, using decennial census

block data from Section 4.2, I regress outcomes on decennial census year dummies interacted with

early treatment (disclosure between 1990 and 2000) status with block fixed effects. The difference

between the two groups in 1990 is normalized to zero. In panel (a), the point estimate for the year

2000 indicates a lower likelihood of development in previously uninhabited SFHAs in early-disclosed

states. Interestingly, the difference between two groups disappear by 2010, coinciding with the full

implementation of disclosure policies including late-disclosed states. A similar pattern is observed for

the probability of having any housing unit in Panel (b). These suggestive evidence implies that the

damage increase in the control group is likely attributable to a faster population and housing units

growth in high-risk areas in the absence of flood risk disclosure.

While the estimated impact of a simple disclosure policy is non-trivial, this number is likely to

underestimate the true benefit because the analysis excludes flood sizes over 50, which incur dispro-
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(b) Placebo States

Figure 5.2: Change in Annualized Loss Probability by the SFHA Ratio. These figures plot the annualized
damage reduction effect from the disclosure requirement by SFHA ratios for (a) disclosed and (b) placebo
states. I estimated equation (5) for communities in different quantile of SFHA ratio, and aggregated coeffi-
cients using equation (6).

portionately large damage. Besides, I abstract away from a potential gain due to a better matching

in flood risk preferences between properties and homebuyers (Bakkensen and Ma 2020).

Robustness check. I test the robustness of my findings by conducting a placebo test using the five

states that had implemented disclosure policies without a question on the flood risk. In Appendix

Table D.7, I estimate a version of equation (5) with coarser flood bins.34 In columns (1) to (3), the

coefficients suggest that disclosure without flood risk information does not reduce the probability

of flood damage at all. The estimates are statistically insignificant and economically small, which

is consistent with Figure 5.2 (b): the effect is zero for all four groups of communities with varying

SFHA exposure.

Another robustness check comes from an event study plot in Appendix Figure D.13, which illus-

trates the marginal effects of disclosure policy on the probability of flood damage for larger (k =

30 − 50) floods. Similar to Appendix Table D.7, I use coarser flood bins to increase power. I also im-

pose an endpoint restriction at -5 and 4. The estimated coefficients show no pre-trend and sharp and

persistent reduction in the probability of flood damage after the policy change. Simple average of

estimated coefficients in the pre vs. post treatment event time suggests that the magnitude of policy

effect is –.19. This on par with the average policy effect (–.17) of two flood categories k = 30 − 40 and
34For statistical power, I group flood events into baseline (k = 1 − 2), small (k = 2 − 30) and large (k = 30 − 50).
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k = 40 − 50 in column (1) in Table 5.1.

Appendix Table D.8 shows that excluding communities with map revision produces essentially the

same results. Finally, Appendix Table D.9 shows that clustering standard errors at the state level

reaches similar conclusion as Table 5.1 especially for the annualized effects.

6 Conclusion

Floods are the costliest natural disaster in the US and are expected to become more frequent and

severe in the future. Thus, curbing economic loss from these events is of first-order importance. The

primary policy prescription in the US to flood risk is engineering-based—i.e., using physical struc-

tures and other building-based responses to reduce damage. However, this approach can attract more

people to areas with flood risk by distorting location choices.

In this paper, I study whether alleviating information frictions regarding flood risk in the housing

market can be an effective way to foster adaptation. By exploiting plausibly exogenous variations

created by flood-risk disclosure requirements, I explore if and how home buyers respond to required

flood-risk disclosure and investigate its implications for flood damage. I find the disclosure require-

ment reduces the population and increases the vacancy rate in high-risk areas. With fewer people

exposed to flood risk, the probability of having any flood damage decreases by 2.3 percentage points

(or 31 percent from the baseline probability). The findings of this paper shows that the disclosure

requirement can facilitate voluntary adaptation by helping homebuyers make more informed choices.
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A Appendix A: Data Appendix

A.1 Flood History Data

Background

A key input to flood damage function is flood size data. An ideal measure of flood size should
satisfy the following four conditions. First, it should be a continuous measure that allows a non-
linear relationship between flood size and damage (Burke et al. 2015, Hsiang 2016).

Second, it should be objective. For instance, the widely used EM-DAT measures flood size using
economic cost or death tolls, which are directly correlated with outcome variables of interest (Felber-
mayr and Gröschl 2014). Another example of potentially endogenous measure is the occurrence of
the Presidential Disaster Declaration (PDD) floods (Gallagher 2014), which depends on the discre-
tion of the president and thus could reflect political interests (Reeves 2011).

Third, it should comprehensive. A few existing studies have leveraged meteorological measures to
objectively measure disasters, but most of them focus on a subset of events. For instance, Deryugina
(2017), Hsiang and Jina (2014), and Strobl (2011) have used physical measures of hurricane intensity
while Davenport et al. (2021) leveraged precipitation data. Despite objectivity, such an approach has
limits in coverage—for instance, precipitation changes alone can explain only one-third of cumulative
flood damages (Davenport et al. 2021).

Lastly, since I measure flood damage at the community by year level, flood size should be mea-
sured at the same level. This is not trivial because most climate data are collected to answer phys-
ical science questions, and thus are not readily mapped into an administrative unit such as commu-
nity (Carleton and Hsiang 2016).

To the best of my knowledge, no existing dataset satisfies all of these properties. In this paper,
I construct an objective measure of past flood events by applying a hydrologic method to the
USGS/NOAA water gauge records. This approach does not distinguish the cause of floods—
hurricane, rainfall, snow melt, etc, as long as it is reflected in the water gauge level. Flood size is
defined and recorded by a recurrence interval, which represents the expected number of years for a
flood of given size to come back, and thus is continuous by construction. Also, by matching gauge
stations to a community, I can measure flood size at the community level.

Procedure

Following the USGS guideline (England Jr et al. 2019), I implemented the following steps using
USGS/NOAA water levels data from 3,505 gauge stations distributed in the 26 ever-disclosed states
in the contiguous US (Appendix Figure A.1).35

First, I construct a site-specific flood size distribution. For this, I retrieved annual peak flow
records using the R package “dataRetrieval” and fit the Log-Pearson III distribution to estimate
gauge-specific parameters (Cicco et al. 2018). Importantly, as I use annual peak discharge data to
fit the distribution, the quantile of the distribution has an intuitive interpretation. For instance, if
a certain water level is the 95th percentile of the distribution, it means that such an event would
happen with a 5 percent probability in a given year. Equivalently, such an event is called a 20-year
( 1

0.05 = 20) flood. I keep stations with at least 10 or more annual peak observations following the
USGS guideline. Also, I use annual peak data until 1990 to fix flood thresholds and make flood size
comparable across different years.

Second, I convert daily water level into the recurrence interval using the fitted flood size distri-
35I randomly sampled 1000 sites in Appendix Figure A.1 for visibility.
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Gauge Location

Figure A.1: The Distribution of a Sample of USGS/NOAA Gauges

Table A.1: Number of MDF Stations vs. IPF Stations in Iowa

Name 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998

N Gauges (Mean Daily Flow) 112 112 105 107 109 109 105 109 112 111
N Gauges (Maximum Daily Flow) 3 8 40 72 34 31 29 34 59 95

bution from step 1. For this, I need an instantaneous flow, because flood exposure is determined
by the maximum, rather than mean, water level. The problem is that for most of the stations, the
maximum daily flow (or more precisely the instantaneous peak flow which enables calculating maxi-
mum daily flow) data have too many missing values. This is problematic because, with many missing
observations, flood events will be significantly under-recorded. To solve this problem, I estimate a
projected instantaneous peak flow from the mean daily flow. In Appendix Table A.1, I report the
number of water gauge stations in Iowa that have daily water level records for at least 80 percent of
the days (i.e., 292 days or more) for a given year. It can be easily seen that there can be an order of
magnitude difference in the number of stations that have mean versus maximum daily water records.

To estimate the daily maximum water level from daily mean water level, I use the Fuller method
(Fuller 1913). Specifically, for a given geographical unit, I estimate Fuller coefficients by regressing
instantaneous peak flow (QIP F

it ) for site i in time t on mean daily flow (QMDF
it ) and the size of the

drainage area (A) as equation (7) (Fuller 1913).36 I use three different levels of geographic units,
namely state, HUC4, and HUC2 and separately estimate Fuller coefficients.37 Using the estimated
coefficients, I calculate projected instantaneous peak flow, and compare that with the actual instanta-
neous peak flow to pick the geographic unit that minimizes the prediction error.38

36I also did conversion following Sangal (1983), but the error between actual and the estimated IPF was much
smaller with Fuller (1913).

37A watershed is uniquely identified by a hydrologic unit code (HUC). There are six levels in the hierarchy, and
HUC2 (regions) and HUC4 (sub-regions) are two highest levels. There are total of 18 and 202 HUC2s and HUC4s in
the contiguous US (Maimone and Adams 2023).

38Practically, I apply the following hierarchy among state, HUC4, and HUC2 models: (1) When a site has the
best match (meaning that a site has both daily mean flow and instantaneous flow records), I use it. (2) If a site does
not have site-specific match (meaning that this site did not have instantaneous flow records), I use prioritized HUC4,
HUC2, and State, because HUC4 had the least overall prediction error. I also remove the cases where a site does not
have drain area (and thus Fuller coefficients cannot be estimated).
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QIP F
it = QMDF

it (1 + αAβ) (7)

Now, by converting the estimated instantaneous peak flow to the quantile of the estimated Log-
Pearson III CDF from step 1, I identify each day’s flood size.

Finally, to translate gauge-level flood events to the community-level floods, I match each commu-
nity to the three nearest gauges based on the distance between a centroid of community and gauge
station. Then, I calculate the average flood size for a community using the inverse distance as a
weight. Appendix Figure A.2 (b) presents the distribution of the average distance between gauges
and community centroid. Over 90 percent of them are within 20 miles with a median distance of 13.5
miles.
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Figure A.2: Flood Frequency Analysis and Gauge Matching. Plot (a) is an example of flood frequency anal-
ysis. The black solid line represents the CDF of the fitted Log-Pearson III distribution from the USGS site
03251000. If a daily discharge volume is 8,500 CFS, it corresponds to the 90th quantile or a 10-year flood.
Plot (b) presents the distribution of the average distance between a gauge and community centroid. Over 90%
of them are within 20 miles with the median distance 13.5 miles.

Appendix Figure A.2 (a) illustrates steps 1 and 2 described above. The black solid line is the fitted
Log-Pearson III CDF from the USGS site 03251000. To fit the distribution, I use the annual peak
flow data from 1947 to 1990 to calculate the mean, standard deviation, and skewness parameters.
Now suppose that on a given date, the daily discharge volume is 8,500 CFS. As it corresponds to the
90th percentile of the CDF, it can be concluded that there was a 10-year flood on that day.

Note, because the USGS gauge stations rarely cover coastal areas, I add 45 additional NOAA sites
to the gauge station data. Zervas (2013) documents the flood threshold for the all NOAA sites by
fitting GEV distribution, so I adopt them directly. NOAA water level data are retrieved using the R
package “Rnoaa” (Edmund et al. 2014).

Unified Flash Flood Database

The Unified Flash Flood Database (Gourley et al. 2013) is USGS-gauge record based dataset con-
structed following a similar procedure outlined. It is a comprehensive and objective measure of flood
events that can present the overall trend of flood events for the contiguous US, which overcomes
many limitations of the existing data. However, I decided not to use this database because the data
are constructed based on the instantaneous peak flow. As Appendix Table A.1 shows, relying solely
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on the instantaneous peak flow can substantially under report flood events due to missing water level
records.

Validation and Summary Statistics

To validate the flood history data, I check the number of the average 10-year flood events over a
20-year period for the 8,194 communities. These communities are from the 26 ever-disclosed states
that are on the Q3 map. By definition, a 10-year flood happens twice in a 20-year period on average.
Figure A.3 (a) shows that most communities had 1 or 2 10-year floods over the 20 years whereas the
average number of 10-year floods is 2.18. While this is slightly higher than 2, it is plausible given
that I use the annual peak flow data until 1990. Fixing flood threshold is necessary to compare
floods across different times (namely, a 10-year flood should have the same magnitude whether it
is in 1990 or 2000). Although this approach can be problematic as the period in consideration gets
longer, it should not be a major problem for this paper as the longest sample period is 20 years.
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Figure A.3: Flood Data Summary Information. Panel (a) shows that most communities had 1 or 2 10-year
floods over the 20 years and the average number of 10-year flood is 2.18. Panel (b) shows the distribution
of flood event size (i.e., recurrence interval), where flood size is truncated at 100 for readability. Panel (c)
illustrates the number of unique floods (size over 2) for community-year. Panel (d) repeats panel (c) for floods
with size over 10.

37



Figure A.3 (b) shows the distribution of flood size (i.e., recurrence interval), where flood size is
truncated at 100 for readability. As is well documented in the literature, the histogram follows a
log-normal distribution, and the frequency decreases as an inverse power function of the flood size
(Jackson 2013).

In panel (c), I plot the number of unique flood events for each community-year, conditional on
having an event with flood size between 2 and 50. The histogram shows that about 70 percent of the
community-years have exactly one event. This alleviates a concern over measuring flood exposure
as the maximum flood size for a given year. More importantly, when I limit attention to floods with
size over 10, which incurs disproportionately large damage, over 90 percent of the community-year
pairs have only one such event.

Table A.2: Comparing the Estimated Flood Size Thresholds with the NWS Threshold

2 Year Flood 10 Year Flood 50 Year Flood 100 Year Flood

Minor 0.778*** 1.285*** 1.74*** 1.944***
(0.052) (0.071) (0.102) (0.124)

Moderate 0.594*** 0.994*** 1.36*** 1.526***
(0.042) (0.06) (0.085) (0.103)

Major 0.45*** 0.771*** 1.081*** 1.226***
(0.034) (0.043) (0.051) (0.06)

Note:
Note: The entries report the results from 12 separate regressions where
each column represents four different dependent variables and each row
represents three different regressors. Standard errors are clustered at the
gauge level. ∗p < 0.1; ∗∗p < 0.05; ∗∗∗p < 0.01.

To better contextualize the recurrence interval based flood size, in Appendix Table A.2, I compare
flood size with the gauge-specific NWS thresholds for minor, moderate, and major floods.39 Specif-
ically, I estimate equation (8) where Qik is the estimated flood threshold for site i for flood size k
where k ∈ {2, 10, 50, 100}. NWSij is flood thresholds from the NWS for site i for flood severity j
where j ∈ {minor, moderate, major}.

Qik = βNWSij + ϵijk (8)

β is the coefficient of interest which illustrates how comparable two thresholds are. Namely, the
closer β is to 1, the more comparable two thresholds are. For this analysis, I use 2,093 sites that
have both recurrence interval based flood size and the NWS flood thresholds. Appendix Table A.2
reports the estimated β for 12 separate regressions and provides useful insights. First, a minor
flood from the NWS is comparable to a flood of size between 2 and 10. To see this, observe that
when minor threshold increases by 1 unit, a 2-year flood threshold is increasing by only 0.78 units.
Conversely, when minor threshold increases by 1 unit, a 10-year flood threshold is increasing by
1.29 units. Second, a 10-year flood threshold is tightly comparable to a moderate flood threshold
(β = 0.99). Similarly, a 50-year flood closely matches with a flood with major impact (β = 1.08).
Note, a 100-year flood threshold is 23 percent higher than a major flood threshold, which is plausible
given that a 50-year flood threshold is comparable to the major category.

39NWS defines each flood category as the following (National Weather Service 2019). Minor: minimal or no property
damage, but possibly some public threat (e.g., inundation of roads). Moderate: some inundation of structures and
roads near stream, evacuations of people and/or transfer of property to higher elevations. Major:extensive inundation of
structures and roads, significant evacuations of people and/or transfer of property to higher elevations.
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A.2 Validation of Key Dependent Variables

Table 3.1 shows that key dependent variables in this paper have prevalence of zeros. These statistics
are consistent with findings from external sources.

Block population. Bureau of the Census (1994) reports that a substantial number of blocks have
zero population, with state-level proportions ranging from 14 percent (RI) to 65 percent (WY), and
a median value of 31 percent (WA). In my sample, the numbers are slightly different at 17 percent
for RI and 26 percent for WA (WY is a non-disclosure state). A minor discrepancy is not surprising
given that blocks not included in the digitized flood map are excluded from the analysis.

Flood insurance counts. There is no prior work that has documented the fraction of communities
with zero insurance policies. However, when I compare the total number of insurance policies by
state in my sample with other studies, I find them highly congruent. For instance, in my sample,
Louisiana had 504,641 policies as of 2007, a figure closely matching the documented 502,085 flood
insurance policies as of December 2007 in Michel-Kerjan and Kousky (2010). Other disclosing states
listed in Michel-Kerjan and Kousky (2010) Table 1 are also well matched: CA (258,808 vs. 266,171),
NC (123,949 vs. 133,955), NY (141,525 vs. 144,253), SC (190,997 vs 197,334), and TX (508,348
vs. 666,920) where the first number is from my sample and the second number is from Michel-Kerjan
and Kousky (2010). Note, for TX, there is a noticeable gap primarily because Harris County is not
in my sample (the county is not included in the digitized flood map described in Section 3).

Flood damage. Similar to the flood insurance policy counts, no prior studies have cataloged the
fraction of community-years with zero flood damage. However, a back-of-the-envelop calculation
suggests that this statistic is in line with existing studies. For that, I take the average probability
(1.45 percent) of filing a claim per policy over 1980–2012 from Kousky and Michel-Kerjan (2015) and
multiply it with the number of flood insurance policies by the community in my sample. The result
reveals that 17 percent of communities are predicted to have more than one claim in a given year
(i.e., 83 percent of community-year observations are predicted to have zero claims). Note, while 83
percent is substantially lower than 95 percent as discussed in Section 3, this is a direct consequence
of sample restriction: as I discuss in detail in Section 5.1, I remove floods with size 50 or above from
my analysis for various economic and statistical reasons. When I undertake the same calculation
without imposing these sample restrictions, I find that 86 percent of community-year observations
have zero claims, a figure consistent with the 83 percent calculated based on Kousky and Michel-
Kerjan (2015).
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B Appendix B: Determinants of Home Seller Disclosure Require-
ment Adoption

Table B.1: State Characteristics in 1990

Ever/Early Never/Late Difference

Variables Mean SE Mean SE Mean P.Value

Panel A: Ever vs. Never States
Population (millions) 6.57 1.31 3.43 0.651 3.143 0.048
Median Age 33.04 0.204 32.82 0.409 0.22 0.616
(%) White 0.827 0.019 0.879 0.018 -0.053 0.051
(%) BA 0.121 0.005 0.129 0.006 -0.007 0.324
Unemployment Rate 0.06 0.003 0.061 0.002 -0.001 0.773
GDP (billions) 152 34.38 74 14.95 78 0.057
N Housing Units (millions) 2.66 0.506 1.47 0.291 1.187 0.059
(%) Vacancy 0.095 0.005 0.132 0.008 -0.037 0
Democratic Party Vote Share 0.455 0.01 0.425 0.012 0.03 0.06
Average Flood Damage per Housing Unit 3.86 1.99 0.931 0.5 2.925 0.194
Flood Size 5.92 0.82 3.29 0.725 2.635 0.022
(%) in SFHA 0.16 0.012 0.132 0.013 0.028 0.117

Panel A: Early vs. Late States
Population (millions) 5.53 1.29 7.8 2.42 -2.274 0.397
Median Age 33.07 0.286 33 0.302 0.071 0.865
(%) White 0.842 0.026 0.808 0.027 0.034 0.374
(%) BA 0.119 0.006 0.124 0.008 -0.005 0.592
Unemployment Rate 0.061 0.004 0.06 0.004 0.001 0.89
GDP (billions) 119 29.72 191 66 -72 0.306
N Housing Units (millions) 2.25 0.527 3.12 0.917 -0.87 0.402
(%) Vacancy 0.095 0.007 0.096 0.007 -0.001 0.908
Democratic Party Vote Share 0.47 0.013 0.438 0.014 0.031 0.118
Average Flood Damage per Housing Unit 3.82 1.99 3.9 3.75 -0.088 0.983
Flood Size 5.71 1.05 6.17 1.34 -0.465 0.784
(%) in SFHA 0.157 0.01 0.163 0.023 -0.006 0.788

Note:
This table compares key characteristics of ever-disclosed vs. never-disclosed (Panel A) and
early-disclosed vs. late-disclosed (Panel B) states. All variables are as of 1990 except for the
Democratic party vote share variable, which comes from 1988 presidential election. The last
two columns show mean differences with p-values.

Given the background of disclosure requirement, the policy is much more likely to be adopted in
states with higher needs or attention for consumer protection. In Table B.1, I compare never vs. ever
(Panel A) and early vs. late (Panel B) adopted states on various characteristics.40

Results in Panel A shows that the 26 ever-adopted states tend to have statistically different de-
mographic, economic, and political characteristics in comparison to the 22 states that never imple-
mented such a policy. For instance, ever-disclosed states have a larger population, housing units,
GDP, higher fraction of White population, and a lower vacancy rate. They’re also more likely to

40The vote share for Democratic party comes from the 1988 Presidential election results compiled by Amlani and
Algara (2021). State level GDP is acquired from BEA. Flood related variables are constructed as detailed in Section 3.
The rest of the variables come from the 1990 decennial census.
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support the Democratic party. Further, they’re tend to experience larger floods.
Interestingly, no such difference is observed when I compare early—14 states that have imple-

mented the policy by 1994—vs. late—12 states implemented after 1994—adopters within the 26
ever-disclosed states. In Panel B of Table B.1, I repeat the same exercise and find that not a single
variable is statistically significantly different between these two groups, to a large part because the
mean difference is much smaller in Panel B. For instance, mean difference for the vacancy rate and
flood size in Panel B is less than 20% of the value in Panel A.41 These observations suggest that the
never-treated states may have meaningfully different trajectory from the ever-treated states. Thus, I
use not-yet-treated states as a control group when employing panel regression models.
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Figure B.1: Correlation Between Disclosure Timing and Flood Profiles. These figures plot the disclosure policy
timing against (a) past flood damage and (b) ex-ante flood risk profile. Panel (c) plots the average flood size
in event time. Values on the y-axis is pooled across all states with the same treatment or event year.

While flood related variables in Panel B of Table B.1 indicates that the implementation timing
is unlikely to be correlated with each state’s underlying flood-risk profile, in Appendix Figure B.1,
I provide additional evidence. In particular, I plot the relationship between disclosure year and (a)
the average flood damage per housing unit and (b) the average proportion of land area inside of
the SFHA. If the policy timing is correlated with underlying flood risk, we would expect to see a
higher risk level for early adopters. However, both flood damage and the SFHA ratio are uncorre-
lated with the implementation year.42 In contrast to panels (a)–(b) where the x-axis is in calendar
years, panel (c) shows the average flood size in event time, namely time relative to passage of the
state’s disclosure legislation. If the decision to adopt a disclosure policy were a direct response to
devastating flood events, the average flood size would be larger for event years right before 0. The
plot also shows that flood size is essentially uncorrelated with policy adoption—if anything, flood
size seems to be smaller in event years -1 and -2, which again suggests that the policy implemen-
tation is not driven by prior flooding. These figures reassure plaubible exogeneity of the disclosure
requirement adoption timing.

41Democratic party vote share is larger for early-disclosed states. This is consistent with earlier findings that atten-
tion on consumer protection is much larger under Democratic regimes (Mullenix 2019).

42Spikes in Figure B.1 (a) and (b) are due to Louisiana, which has substantially higher flood damage per housing
unit and a higher fraction of land area in SFHAs compared to other states.
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C Appendix C: Disclosure Requirement and Housing Price
Housing price change to the disclosure policy is of interest in its own right, but it is also a first pass
at testing the efficacy of the disclosure policy. That is, by comparing the estimated effect of flood
risk information (through the disclosure requirement) to estimates from prior studies, I can indirectly
test whether the disclosure requirement was effectively raising homebuyers’ flood risk awareness.

For housing prices, I use the Zillow Transaction and Assessment Database (ZTRAX).43 It docu-
ments transaction dates, sales prices, and housing characteristics such as type (e.g., single house,
condominium, etc.), exact longitude and latitude, year built, and the number of bedrooms.44

A combination of the different policy implementation timing and the differential treatment of prop-
erties located in and out of an SFHA allows me to employ a triple difference design using the stacked
DDD approach. I use not-yet-treated states as clean controls and exploit the policy implementation
timing among the ever-treated states. Equation (9) estimates the impact of the disclosure policy on
the housing price.

log(Priceijmstd) = βTijmstd + θmjhld + µjtd + λmtd + ϵijmstd (9)

Priceijmstd is the housing price for a property i with SFHA status j in community m in state s
at time t in stack d and Tijmstd is the treatment status dummy, which takes on a value of 1 when
SFHA = Post = Disclosure = 1 where SFHA is a dummy for the SFHA status, Post is a dummy for
the post-disclosure period, and Disclosure is a dummy for the treatment group assignment.45

I also include a complete set of two-way fixed effects µjtd: SFHA × Time × Stack, λmtd: Commu-
nity × Time × Stack, and θmjhld: Community × SFHA × Building Age × Number of Beds × Stack
to estimate β. These fixed effects allow me to estimate the policy effect using the sales price varia-
tion before and after the disclosure policy, inside and outside of the SFHA while controlling for the
community by SFHA specific property characteristics. Further, these fixed effects are interacted with
the stack d, to ensure that comparisons are made within each stack. For building age h, I group con-
struction years into 10-year bins (e.g., 2000-2009, 1990-1999, etc.) and for the number of bedrooms
l, I group them into 1-3, 4-6, 7-10, and 10-or-more bedrooms bins. The identification comes from
plausibly exogenous disclosure policy change timings after conditioning on the set of fixed effects.

In Table C.1 column (1), I report the estimated coefficients of equation (9) to find that the disclosure
requirement reduces the price of the properties in the SFHA by 4.5 percent in comparison to those
outside of the SFHA. To put this number in context, I multiply the estimate from column (1) to the
average price of properties located in the SFHA in the pre-disclosure period ($327,171) to produce
the estimated reduction in the housing price of $14,598. Importantly, community by year level poten-
tial confounders such as flood exposure or flood insurance premiums are controlled by the community
by year fixed effects in this specification. In column (2), I show that the estimate in column (1) is
robust to removing properties in communities that have experienced a flood map update over the
sample period. The estimate in column (2) is essentially identical, suggesting that map updates are
uncorrelated with the disclosure policy implementation.

Figure C.1 presents an event study style graph, measuring the policy effect over event time. β̂k in
43I thank Eyal Frank for his generous help with data access.
44I apply the following sample restrictions. First, I drop observations without longitude and latitude information.

Second, I keep only single-family houses in the sample, reflecting the fact that the disclosure requirement in many
states is applied only to one to four dwelling units. Third, I restricted the transaction price to be between $10,000 and
$100,000,000 in nominal dollars.

45For details on creating data stacks, see Section 4.1.
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Table C.1: Effect of Disclosure Requirement on the Housing Prices

(1) (2)
SFHA × Disclosure × Post −.045∗∗∗ −.046∗∗

(.015) (.018)

Sample Entire
Communities

No-Revision
Communities

Stack × Community × Year FE X X
Stack × Community × Year FE X X
Stack × Community × SFHA × Year Built × N Beds FE X X
Num. obs. 6249070 5931016
Note: Column (1) shows β̂ from equation (9) from the 26 ever-disclosed states. In column (2), I remove observations from
communities that have experienced Flood Insurance Rate Map, or an official flood map, update during the sample period. The
dependent variable is log(sales price). All standard errors are clustered at the state level. ∗p < 0.1; ∗∗p < 0.05; ∗∗∗p < 0.01.
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Figure C.1: The Effect of the Disclosure Requirement on Housing Price. These figures plot the coefficients
of interaction terms between the SFHA status and disclosure policy dummies in event time. The dependent
variable is the log of housing price. Standard errors are clustered on state.
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the pre-disclosure periods are almost zero, satisfying the parallel trend assumption. Since the first
year of the policy change, the price of affected properties has fallen by about 4 percent. The effect is
persistent up until five years after the policy implementation.
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D Appendix D: Additional Tables and Figures

Table D.1: Balance Table (Tracts by the SFHA Status)

No SFHA With SFHA Difference

Variables Mean SE Mean SE Mean t-stat

N Housing Unit 1377 6.31 1408 4.2 32 1.2
N Home Age Below 6 92 1.58 160 1.14 68 4.64
N Home Age Above 42 558 5.09 343 2.44 -216 -3.7
(%) Home Age Below 6 0.078 0.0012 0.1296 9e-04 0.052 4.1
(%) Home Age Above 42 0.3961 0.0028 0.2337 0.0014 -0.162 -3.8

Note:
This table compares the proportion of older and newer housing stocks in
census tracts with and without SFHAs. The last two columns show mean
differences with t-statistics. Standard errors are clustered at the state level.

Back to 2.1.
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Table D.2: Effect of Discosure Requirement on Household Responses (Placebo States)

Prob. of Any
Population Log Population Vacancy Rate

(1) (2) (3)
SFHA × Post .004 .036 .004

(.004) (.061) (.012)
Avg D.V. (Within BW) 0.595 0.096
Bandwidth 395 438 400
Num. obs. 311076 198685 186471
Note: This table is produced from equation (1). Columns (1)–(3) are estimated using the decen-
nial census block-level data in 1990, 2000, 2010, and 2020. Standard errors are clustered at the
state level. ∗p < 0.1; ∗∗p < 0.05; ∗∗∗p < 0.01.

Back to 4.2.
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Table D.3: Effect of Discosure Requirement on Population and Vacancy Rate (Doughnut Specifica-
tion)

Prob. of Any
Population

Log
Population

Vacancy
Rate

Prob. of Any
Population

Log
Population

Vacancy
Rate

(1) (2) (3) (4) (5) (6)
SFHA × Post −.011∗∗ −.079∗∗ .013∗∗∗ −.007 −.080∗∗ .014∗∗

(.004) (.031) (.004) (.005) (.033) (.006)
Avg D.V. (Within BW) 0.692 0.093 0.704 0.092
Doughnut Size 20 20 20 40 40 40
Num. obs. 1228215 1765788 1550895 984969 1609485 1395789
Note: This table is produced from equation (1) after excluding observations closest to the SFHA border. In columns (1)–(3), doughnut sizes
are 20 meters and in columns (4)–(6) doughnut sizes are 40 meters. Standard errors are clustered at the state level. ∗p < 0.1; ∗∗p < 0.05;
∗∗∗p < 0.01.

Back to 4.2.

47



Table D.4: Effect of Discosure Requirement on Net Population Flow (Excluding Blocks with Map
Revision)

Prob. of Any
Population

Log
Population

Vacancy
Rate

(1) (2) (3) (4)
SFHA × Post −.011∗∗∗ −.071∗∗ .014∗∗∗

(.003) (.031) (.004)
High SFHA × Disclosure × Post −.009

(.006)
Avg D.V. 0.67 0.098
Year × Stack FE X
Community × Stack FE X
Bandwidth 138 301 262
Num. obs. 1313619 1682626 481467 1495039
Note: Estimates are based on equation (1) and (2) after removing geographic units that have experienced flood
map update. Columns (1)–(2) and (4) are estimated using the decennial census block-level data in 1990, 2000,
2010, and 2020. Columns (3) is estimated using community-level population data. Standard errors are clustered
at the state level. ∗p < 0.1; ∗∗p < 0.05; ∗∗∗p < 0.01.

Back to 4.2.
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Table D.5: Effect of Discosure Requirement on Flood Insurance Take-Up (Excluding Communities
with Map Revision)

Prob. of Any
Insurance

Log Insurance
Per Housing Unit

(1) (2)
High SFHA × Disclosure × Post .003 −.023

(.008) (.030)
Avg D.V. 0.819
State × Year × Stack FE X X
Community × Stack FE X X
Num. obs. 390382 319639
Note: This table is produced from equation (2) using community-level National Flood
Insurance Program data after removing communities that have experienced map update
during the sample period. Standard errors are clustered at the state level. ∗p < 0.1;
∗∗p < 0.05; ∗∗∗p < 0.01.

Back to 4.2.
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Table D.6: Effect of Disclosure Requirement on Flood Damage

Prob. of Any Damage
Per Housing Unit

Log Damage
Per Housing Unit

(1) (2) (3) (4)
Flood Size 2-10 .020∗∗∗ .022∗∗∗ .019∗∗ .223∗∗∗

(.007) (.008) (.008) (.054)
Flood Size 10-20 .054∗∗∗ .071∗∗∗ .039∗∗∗ 1.140∗∗∗

(.012) (.016) (.010) (.104)
Flood Size 20-30 .078∗∗∗ .108∗∗∗ .048∗∗∗ 2.095∗∗∗

(.023) (.032) (.013) (.419)
Flood Size 30-40 .068∗∗∗ .082∗∗∗ .052∗ 1.584∗∗∗

(.024) (.031) (.027) (.338)
Flood Size 40-50 .096∗∗ .144∗∗∗ .026 1.850∗∗∗

(.042) (.046) (.040) (.254)
Disclosure × Size 2-10 .028∗∗∗ .039∗∗∗ .014∗∗∗ .087

(.009) (.015) (.005) (.164)
Disclosure × Size 10-20 .094∗∗∗ .117∗∗∗ .065∗∗∗ −.003

(.017) (.026) (.009) (.086)
Disclosure × Size 20-30 .114∗∗∗ .144∗∗∗ .075∗∗∗ −.164

(.018) (.028) (.017) (.138)
Disclosure × Size 30-40 .106∗∗∗ .112∗∗∗ .100∗∗∗ .077

(.030) (.033) (.030) (.156)
Disclosure × Size 40-50 .107∗∗ .115∗∗ .100∗∗∗ −.048

(.044) (.054) (.031) (.406)
Post × Size 2-10 .028∗∗ .035∗∗∗ .018∗ .452∗∗

(.012) (.012) (.010) (.184)
Post × Size 10-20 .094∗∗∗ .096∗∗∗ .088∗∗∗ .086

(.030) (.034) (.030) (.076)
Post × Size 20-30 .105∗∗∗ .117∗∗∗ .093∗∗∗ −.349

(.028) (.032) (.032) (.326)
Post × Size 30-40 .191∗∗∗ .246∗∗∗ .140∗ .668∗

(.054) (.044) (.078) (.361)
Post × Size 40-50 .239∗∗∗ .356∗∗∗ .135∗∗∗ .629∗∗

(.040) (.042) (.046) (.312)
Post × Disclosure × Size 2-10 −.039∗ −.056∗ −.021 −.063

(.023) (.030) (.015) (.325)
Post × Disclosure × Size 10-20 −.072∗ −.086∗ −.051∗ .189

(.039) (.050) (.029) (.189)
Post × Disclosure × Size 20-30 −.080∗∗∗ −.131∗∗∗ −.018 .170

(.029) (.038) (.031) (.562)
Post × Disclosure × Size 30-40 −.141∗ −.172∗∗ −.111 −.360

(.073) (.072) (.082) (.442)
Post × Disclosure × Size 40-50 −.197∗∗∗ −.339∗∗∗ −.054 −.425

(.055) (.061) (.068) (.540)
Sample All High SFHA Low SFHA Damage > 0
Year × Stack FE X X X X
Community × Stack FE X X X X
Num. obs. 505383 242458 262925 22100
Note: This table shows the full sets of coefficients for Table 5.1. ∗p < 0.1; ∗∗p < 0.05; ∗∗∗p < 0.01.

Back to 5.2.
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Table D.7: Effect of Disclosure Requirement on Flood Damage (Placebo States)

Prob. of Any
Damage

(1) (2) (3)
Post × Disclosure (Size 2-30) .007 .003 .010

(.006) (.006) (.008)
Post × Disclosure (Size 30-50) .045 −.046 .175

(.138) (.152) (.132)
Sample All High SFHA Low SFHA
Year × Stack FE X X X
Community × Stack FE X X X
Num. obs. 29626 14864 14762
Note: This table repeats Table 5.1 using the placebo states. The dependent variables
in columns (1) to (3) are the probability of having any flood damage per housing unit.
Column (1) is based on the entire set of communities while in columns (2) and (3), I
repeat (1) using the subsample of communities with an above median SFHA ratio and
below median SFHA ratio. Spatial-HAC standard errors that allow spatial correlation of
up to 500 miles are estimated for inference for columns (1)–(3). ∗p < 0.1; ∗∗p < 0.05;
∗∗∗p < 0.01.

Back to 5.2.
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Table D.8: Effect of Disclosure Requirement on Flood Damage (Excluding Communities with Map
Revision)

Prob. of Any Damage
Per Housing Unit

Log Damage
Per Housing Unit

(1) (2) (3) (4)
Post × Disclosure (Size 2-10) −.038∗ −.054∗ −.020 .089

(.023) (.030) (.015) (.256)
Post × Disclosure (Size 10-20) −.060 −.070 −.043∗ .249

(.037) (.051) (.024) (.214)
Post × Disclosure (Size 20-30) −.081∗∗ −.132∗∗∗ −.015 .034

(.037) (.042) (.037) (.590)
Post × Disclosure (Size 30-40) −.139∗ −.151∗∗ −.124 −.596

(.078) (.062) (.102) (.430)
Post × Disclosure (Size 40-50) −.219∗∗∗ −.352∗∗∗ −.072 −.377

(.068) (.065) (.083) (.562)
Annual Effect -0.023** -0.032*** -0.012 0.009

(0.01) (0.011) (0.009) (0.053)

Sample All High SFHA Low SFHA Damage > 0
Year × Stack FE X X X X
Community × Stack FE X X X X
Num. obs. 487704 233225 254479 20619
Note: This table repeats Table 5.1 after removing communities that have experienced map updates during the sam-
ple period. Spatial-HAC standard errors that allow spatial correlation of up to 500 miles are estimated for inference.
∗p < 0.1; ∗∗p < 0.05; ∗∗∗p < 0.01.

Back to 5.2.
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Table D.9: Effect of Disclosure Requirement on Flood Damage (State Level Clustering)

Prob. of Any Damage
Per Housing Unit

Log Damage
Per Housing Unit

(1) (2) (3) (4)
Post × Disclosure (Size 2-10) −.039∗ −.056∗ −.021 −.063

(.020) (.029) (.013) (.354)
Post × Disclosure (Size 10-20) −.072 −.086 −.051 .189

(.045) (.070) (.031) (.277)
Post × Disclosure (Size 20-30) −.080∗ −.131∗ −.018 .170

(.044) (.066) (.037) (.608)
Post × Disclosure (Size 30-40) −.141 −.172∗ −.111 −.360

(.090) (.095) (.096) (.624)
Post × Disclosure (Size 40-50) −.197∗∗∗ −.339∗∗∗ −.054 −.425

(.066) (.084) (.053) (.582)
Annual Effect -0.023** -0.034** -0.012 -0.012

(0.01) (0.014) (0.008) (0.072)

Sample All High SFHA Low SFHA Damage > 0
Year × Stack FE X X X X
Community × Stack FE X X X X
Num. obs. 505383 242458 262925 22100
Note: This table repeats Table 5.1 with state level clustering. ∗p < 0.1; ∗∗p < 0.05; ∗∗∗p < 0.01.

Back to 5.2.
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FORM 108 (05/2019) COPYRIGHT ILLINOIS REALTORS® Page 1 of 4 

Illinois REALTORS® 
RESIDENTIAL REAL PROPERTY DISCLOSURE REPORT 

(765 ILCS 77/35) 

NOTICE: THE PURPOSE OF THIS REPORT IS TO PROVIDE PROSPECTIVE BUYERS WITH INFORMATION ABOUT MATERIAL 
DEFECTS IN THE RESIDENTIAL REAL PROPERTY. THIS REPORT DOES NOT LIMIT THE PARTIES’ RIGHT TO CONTRACT FOR THE 
SALE OF RESIDENTIAL REAL PROPERTY IN “AS IS” CONDITION. UNDER COMMON LAW, SELLERS WHO DISCLOSE MATERIAL 
DEFECTS MAY BE UNDER A CONTINUING OBLIGATION TO ADVISE THE PROSPECTIVE BUYERS ABOUT THE CONDITION OF 
THE RESIDENTIAL REAL PROPERTY EVEN AFTER THE REPORT IS DELIVERED TO THE PROSPECTIVE BUYER. COMPLETION OF 
THIS REPORT BY THE SELLER CREATES LEGAL OBLIGATIONS ON THE SELLER; THEREFORE SELLER MAY WISH TO CONSULT 
AN ATTORNEY PRIOR TO COMPLETION OF THIS REPORT. 

Property Address:    

City, State & Zip Code: 

Seller’s Name:   

This Report is a disclosure of certain conditions of the residential real property listed above in compliance with the Residential Real Property 
Disclosure Act. This information is provided as of _____________________________, 20___, and does not reflect any changes made or occurring 
after that date or information that becomes known to the seller after that date. The disclosures herein shall not be deemed warranties of any kind by 
the seller or any person representing any party in this transaction. 

In this form, “am aware” means to have actual notice or actual knowledge without any specific investigation or inquiry. In this form, a “material 
defect” means a condition that would have a substantial adverse effect on the value of the residential real property or that would significantly impair 
the health or safety of future occupants of the residential real property unless the seller reasonably believes that the condition has been corrected. 

The seller discloses the following information with the knowledge that even though the statements herein are not deemed to be warranties, 
prospective buyers may choose to rely on this information in deciding whether or not and on what terms to purchase the residential real property. 

The seller represents that to the best of his or her actual knowledge, the following statements have been accurately noted as “yes” (correct), “no” 
(incorrect), or “not applicable” to the property being sold. If the seller indicates that the response to any statement, except number 1, is yes or not 
applicable, the seller shall provide an explanation, in the additional information area of this form. 

YES NO N/A 
1. ___ ___ ___ Seller has occupied the property within the last 12 months. (No explanation is needed.)
2. ___ ___ ___ I am aware of flooding or recurring leakage problems in the crawl space or basement.
3. ___ ___ ___ I am aware that the property is located in a flood plain or that I currently have flood hazard insurance on the property.
4. ___ ___ ___ I am aware of material defects in the basement or foundation (including cracks and bulges).
5. ___ ___ ___ I am aware of leaks or material defects in the roof, ceilings, or chimney.
6. ___ ___ ___ I am aware of material defects in the walls, windows, doors, or floors.
7. ___ ___ ___ I am aware of material defects in the electrical system.
8. ___ ___ ___ I am aware of material defects in the plumbing system (includes such things as water heater, sump pump, water

treatment system, sprinkler system, and swimming pool). 
9. ___ ___ ___ I am aware of material defects in the well or well equipment.
10. ___ ___ ___ I am aware of unsafe conditions in the drinking water.
11. ___ ___ ___ I am aware of material defects in the heating, air conditioning, or ventilating systems.
12. ___ ___ ___ I am aware of material defects in the fireplace or wood burning stove.
13. ___ ___ ___ I am aware of material defects in the septic, sanitary sewer, or other disposal system.
14. ___ ___ ___ I am aware of unsafe concentrations of radon on the premises.
15. ___ ___ ___ I am aware of unsafe concentrations of or unsafe conditions relating to asbestos on the premises.
16. ___ ___ ___ I am aware of unsafe concentrations of or unsafe conditions relating to lead paint, lead water pipes, lead plumbing pipes

or lead in the soil on the premises. 
17. ___ ___ ___ I am aware of mine subsidence, underground pits, settlement, sliding, upheaval, or other earth stability defects on the

premises. 
18. ___ ___ ___ I am aware of current infestations of termites or other wood boring insects.
19. ___ ___ ___ I am aware of a structural defect caused by previous infestations of termites or other wood boring insects.
20. ___ ___ ___ I am aware of underground fuel storage tanks on the property.
21. ___ ___ ___ I am aware of boundary or lot line disputes.
22. ___ ___ ___ I have received notice of violation of local, state or federal laws or regulations relating to this property, which violation

has not been corrected. 
23. ___ ___ ___ I am aware that this property has been used for the manufacture of methamphetamine as defined in Section 10 of the

Methamphetamine Control and Community Protection Act. 

Note: These disclosures are not intended to cover the common elements of a condominium, but only the actual residential real property 
including limited common elements allocated to the exclusive use thereof that form an integral part of the condominium unit. 

Note: These disclosures are intended to reflect the current condition of the premises and do not include previous problems, if any, that the seller 
reasonably believes have been corrected. 

Figure D.1: Example of the Home Seller Disclosure Form (IL)

Back to 2.1.
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Figure D.2: Sample Flood Insurance Rate Map (Borough of Stonington, CT)

Back to 2.2.
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Figure D.3: Histogram of the Proportion of the SFHA at the Community Level. The plot shows the distribu-
tion of the SFHA ratio for the 8,194 communities that are on the Q3 map (first generation of digitized flood
map) and in the 26 ever-disclosed states.

Back to 2.2.
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Figure D.4: Census Geographies and the SFHA Status (Borough of Stonington, CT)
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Figure D.5: Histogram of Running Variable (Distance to the SFHA Border)
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Figure D.6: The Effect of the Disclosure Requirement on Population and Vacancy Rate for Different Band-
widths. These figures plot δ̂6 from equation (1) for a range of bandwidths. The level of observation is census
block, which is the smallest census geographical unit. Standard errors are clustered at the state level.
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Figure D.7: The Effect of the Disclosure Requirement on Population and Vacancy Rate by Control Group
Distance Bin. These figures plot δ̂6 from equation (1) for control groups of varying distance. X-axis indicates
the distance bin of control group in multiples of variable specific optimal bandwidth that has been used for
the analysis (e.g., distance bin r on x-axis indicates that blocks that are within (r − 1) and r times optimal
bandwidth have been used to form a control group). The level of observation is census block, which is the
smallest census geographical unit. Standard errors are clustered at the state level.
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Figure D.8: The Effect of the Disclosure Requirement on Population and Vacancy Rate with Time Varying
Discontinuity. These figures plot δ̂6 from a variant of equation (1) that allows time varying discontinuity at
the border. The level of observation is census block, which is the smallest census geographical unit. Standard
errors are clustered at the state level but omitted due to readability.
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Figure D.9: The Effect of the Disclosure Requirement on Population and Vacancy Rate for Different Band-
widths (Placebo States). These figures plot δ̂6 from equation (1) for a range of bandwidths for the placebo
states. The level of observation is census block, which is the smallest census geographical unit. Standard errors
are clustered at the state level.
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Figure D.10: The Effect of Disclosure on the Probability of Having Any Flood Insurance. This figure depicts
the impact of disclosure on the probability of having any flood insurance policy at the community level using
an event study version of equation (2). The error bar represents the 95% confidence interval.
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(d) Treatment Group (High Risk Communities)
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Figure D.11: The Effect of Disclosure on the Damage Function with 95% Confidence Intervals. These plots
reproduce Figure 5.1 with corresponding confidence intervals.
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Figure D.12: Population and Housing Unit Changes within SFHAs by Treatment Status. These figures plot
the (a) difference in probability of having any population and (b) difference in probability of having any hous-
ing unit between blocks that were treated early (before 2000) and late (after 2000) over time. The difference in
1990 between two groups are normalized to 0.

Back to 5.2.

65



−0.4

−0.2

0.0

0.2

−4 −2 0 2
Years Since Disclosure

P
ro

b.
 o

f A
ny

 D
am

ag
e 

fo
r 

La
rg

er
 F

lo
od

s

 Estimate 95% CI

Figure D.13: The Effect of Disclosure on the Damage in Event Time. This figure depicts ˆβ30−50
4,t for flood size

of 30-50 in event time t where the dependent variable is probability of having any damage. The error bar
represents the 95% confidence interval.
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