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Abstract

Despite intensifying climate change, population exposure to flood risk in the US remains high, amplifying
the economic toll of floods. This paper leverages two quasi-experimental variations of a Home Seller
Disclosure Requirement to study whether providing flood risk information to homebuyers can reduce
flood damage by lowering flood exposure. Using a hydrological measure of flood size, I first demonstrate
that mandating flood risk disclosure decreases the probability of experiencing flood damage by 38
percent. Additionally, the policy reduces the population living in high-risk areas, highlighting that
easing information frictions can promote voluntary adaptation to natural disasters.
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1 Introduction

Since 1980, floods in the United States have caused over $1 trillion in damage, and climate scientists

predict they will become more frequent and severe in the future (Milly et al. 2002, NOAA 2020).

Despite these warnings, many Americans continue to settle in flood-prone areas, amplifying the

economic toll of floods (Weinkle et al. 2018, Redfin 2023, Titus 2023). Previous studies suggest that

this seemingly counterintuitive behavior may stem from homebuyers’ limited awareness of flood risks,

which prevents them from fully internalizing the potential costs of their choices (Bakkensen and

Barrage 2021, Wagner 2022).1 Recently, flood risk information policies have gained attention as a

strategy to reduce flood damage, but their effectiveness remains largely unknown.2

This paper leverages quasi-experimental variations from a Home Seller Disclosure Requirement

(hereafter, “the disclosure requirement”) to examine (1) whether improving access to flood risk infor-

mation can reduce flood damage and (2) if so, whether this effect arises from a decline in population

in high-risk areas. The policy mandates that home sellers disclose known property defects to buyers

through a standardized form (Lefcoe 2004). Regarding flood risk, a typical question is if a property

is located in a Special Flood Hazard Area (SFHA)—an area with elevated risk defined by the official

flood map. Given that limited awareness may result from the costs of acquiring and processing in-

formation (Kunreuther and Pauly 2004), the disclosure requirement could alleviate the problem by

efficiently informing homebuyers about flood risks.

The disclosure requirement was rolled out across 26 states in the contiguous US from 1992–2003.

The variation in implementation timing is from plausibly exogenous state court rulings on the extent

of realtor liability for incomplete disclosure, which facilitates a difference-in-differences research de-

sign (Roberts 2006). I also leverage additional variation stemming from the spatial discontinuity in

flood risk information at SFHA borders, which allows me to identify the effect of information while

holding true flood risk constant (Noonan et al. 2022). To further control for potentially confounding

time-invariant differences at the SFHA border, I use the difference-in-discontinuity approach (Grembi

et al. 2016).
1Although official flood maps have long been publicly available, a large body of evidence suggests a lack of flood

risk awareness among homebuyers. For instance, Chivers and Flores (2002) find only 14 percent of homebuyers in
high-risk areas learned about flood risk before closing.

2For instance, FEMA has proposed a reform to the National Flood Insurance Program (NFIP) that would make a
community’s eligibility contingent on mandatory flood risk disclosure (U.S. Department of Homeland Security 2022).
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I collect multiple datasets to leverage these variations. For flood damage, I use damage records

from flood insurance adjuster reports. To measure the physical size of flooding, I construct a novel

dataset based on a hydrological measure of flood intensity, which objectively documents flood events

from various meteorological causes (Saharia et al. 2017, England Jr et al. 2019). For population, I

use block-level Decennial Census data and complement it with community-level annual Census data.

Because the main outcome variables have a mass point at zero with a long right tail, I estimate the

extensive and intensive margin effects separately in my regression models (Chen and Roth 2022).

The empirical exercise produces two key results. First, I show that the disclosure policy reduces

flood damage. To do this, I first estimate a non-parametric flood damage function—a mapping be-

tween community-level flood size and the corresponding damage. Then, I estimate the causal effect

of the disclosure requirement on the damage function using a stacked difference-in-differences ap-

proach (Cengiz et al. 2019, Brot-Goldberg et al. 2020). The results show that the policy significantly

flattens the damage function, with the annualized probability of any flood damage at the community

level decreasing by 2.7 percentage points, or 38 percent of the baseline. Moreover, the reduction in

damage is three times larger in high-risk (i.e., high treatment intensity) communities.

In the subsequent section, I explore the mechanism by testing whether the disclosure policy re-

duces population in high-risk areas. By leveraging spatial discontinuities, I find that census blocks

(with non-zero populations) in SFHA areas experience a 7 percent decline in population after the dis-

closure policy. At the extensive margin, the disclosure lowers the probability of a block in an SFHA

having any population by 0.01, or 1.5 percent from the baseline. I further show that these effects

are driven by diverted in-migration (and resulting suppressed development) rather than active out-

migration from SFHA areas. These results survive a battery of robustness checks that account for

potential treatment spillovers (e.g., doughnut regressions) or concurrent policy changes (e.g., models

allowing for time-varying discontinuities at the border). Additionally, no population or damage re-

duction effects are observed in the “placebo” states, which had implemented a home seller disclosure

requirement without a question on flood risk.

This paper contributes to four different bodies of literature. First, it is related to prior studies on

factors that reduce damage from climate change. While earlier studies primarily focus on technology

as a driver of adaptation (Miao and Popp 2014, Barreca et al. 2016, Burke and Emerick 2016), I
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focus on the role information can play in aligning private incentives with socially desirable outcomes.

A recent paper by Fairweather et al. (2024), which experimentally demonstrates that Redfin users

are more likely to make offers on safer properties when provided with flood risk information, is an

important exception. I complement Fairweather et al. (2024) by studying responses to flood risk in-

formation across a broader population, beyond users of a single service provider. More importantly, I

go further than investigating homebuyer responses alone to directly test whether, and to what extent,

information provision can flatten the damage function (i.e., reduce flood damage)—an ultimate goal

of climate adaptation policies (IPCC 2022).

Second, I add to the literature on the role of government in shaping household adaptation behav-

iors (Kousky et al. 2006, 2018, Gregory 2017, Peralta and Scott 2020, Baylis and Boomhower 2022).

Perhaps the closest papers conceptually are Baylis and Boomhower (2021) and Ostriker and Russo

(2023), which show how building code policies can reduce wildfire damage or flood risk exposure, re-

spectively. A key difference is that the policies studied by these papers directly mandate adaptation,

whereas disclosure policies encourage voluntary adaptation such as choosing safer places to live.

Third, and more broadly, I build on earlier work studying the impacts of flood risk information on

housing market. These studies typically explore the impact of information shocks on housing prices

to test whether housing market is efficient (Bin and Landry 2013, Hino and Burke 2021, Bakkensen

and Barrage 2021) or to estimate households’ willingness to pay to avoid flood risk (Pope 2008,

Bosker et al. 2019).3 This paper departs from these studies by examining how information provision

affects flood damage, thereby offering a more direct assessment of its contribution to social welfare.

Finally, I contribute methodologically by constructing a novel measure of flood exposure (i.e., size),

which is a critical step in identifying climate effects (Hsiang 2016). My approach leverages hydro-

logical measures, which allow me to objectively document flood events for various causes including

rainfall, snow melt, or storm surge. This extends the existing measures that are either endogenous or

more focused in scope (Strobl 2011, Felbermayr and Gröschl 2014, Davenport et al. 2021).

The paper proceeds as follows. Section 2 provides background on the Home Seller Disclosure Re-

quirement and the Special Flood Hazard Area. Section 3 details the data sources. Sections 4 and 5

show the disclosure policy effect on flood damage and population, respectively. Section 6 concludes.
3For example, Hino and Burke (2021) uses flood map updates as the main source of information shock and tests if

the housing market efficiently prices flood risk. In contrast, I focus on net population flows following an information
shock and the associated changes in flood damage.
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2 Background

Disclosure Start Year

1992 1993 1994 1995 1996 1998 2002 2003 No Disclosure

Figure 2.1: The Disclosure Requirement Implementation over Time

Background of policy adoption. Traditionally, homebuyers were expected to practice caution re-

garding property defects (“caveat emptor” or “let the buyer beware” doctrine). However, due to

increasing consumer protectionism and public awareness of environmental and health concerns, state

courts began holding listing agents accountable for incomplete disclosures (Weinberger 1996, Lefcoe

2004). In response, the National Association of Realtors issued a resolution in 1991 urging state asso-

ciations to develop and support legislation regarding the statutory disclosure requirement in an effort

to deflect potential liability to sellers (Tyszka 1995, Washburn 1995).

Consequently, as Figure 2.1 shows, between 1992 and 2003, 26 states (excluding DC) in the con-

tiguous US adopted a disclosure requirement with an explicit question on flood risk while the remain-

ing 22 states did not implement such a requirement until at least the late 2010s. Importantly, five of

the 22 non-disclosure states adopted a home seller disclosure mandate without a question on flood

risk. These “placebo” states are useful for checking the robustness of the main results.4

Disclosure content. A statutory disclosure requirement mandates that home sellers fill out a stan-

dardized form regarding known property conditions and typically deliver it before closing (Stern

2005). Importantly, the disclosure requirement is not exclusively about flood risk. As Appendix Fig-
4Appendix Table D.1 reports disclosure timing for disclosed and placebo states.
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ure D.1 illustrates, a typical form covers a wide range of property conditions including structural

issues (e.g., problems with walls) and surroundings (e.g., flood risks).5 This implies that the policy

adoption decision is likely to be uncorrelated with underlying flood characteristics or policies. Indeed,

Appendix Figures D.2 show little correlation between the timing of disclosure requirements and (a)

the size of flood damage, (b) the probability of having any flood damage, (c) ex-ante flood risk levels,

(d) other local flood policies (Community Rating System participation), or (e) recent flood history.

The exact language of disclosure on flood risk varies slightly from state to state, but some combina-

tion of the following three questions usually appears: whether a property is in the SFHA; whether a

property has flood damage history; and whether a property has flood insurance.6 Because properties

on the SFHA are more susceptible to flooding, answers to these questions are highly correlated: flood

insurance policy and claims data show that 71% (75%) of the claims (flood insurance policies) are

from properties in the SFHA. Thus, irrespective of the language, the disclosure requirement is likely

to raise homebuyers’ flood risk awareness for properties in SFHAs relative to those outside.

It is worth highlighting that while the disclosure policy helps determine whether a given property

is at high flood risk, it provides no information on (1) flood zone boundaries or (2) the flood risk

status of other properties on the market. As a result, it is likely difficult for homebuyers to engage in

strategic avoidance behavior, such as selectively purchasing properties just outside flood zones, based

solely on the information provided by the disclosure.

Flood Map and Special Flood Hazard Area (SFHA). Three facts about SFHA, an area designated

by an official flood map for potential inundation by a 100-year flood, are worth highlighting. First,

the SFHA boundary is determined by comparing water surface and ground elevations under a 100-

year flood scenario (FEMA 2005). This gives rise to the spatial discontinuity design because the

disclosure treats flood risk as binary, while actual flood risk varies more gradually across boundaries

(Noonan et al. 2022). Second, as shown in Appendix Figure D.4, most communities have only a

small fraction of area in SFHA, which suggests that potential treatment spillovers into non-SFHA
5Since the disclosure delivers a bundle of information, discerning treatment mechanism can be challenging if there

is a positive correlation between flood risk and other property defects. In Appendix Table D.2, I demonstrate that
properties in tracts with SFHAs are notably newer compared to those in tracts without SFHAs. As property defects
typically emerge over time, this table suggests that the disclosure policy’s impact stems from flood risk information
rather than other property defects.

6As of 2021, 5 states ask just the first question about the SFHA status, 15 states ask about SFHA status and past
flood experience, and 4 states ask all three questions. MI and TN ask about the latter two only.
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areas are likely minimal (Busso et al. 2013, Alves et al. 2024). Third, SFHA areas change occasion-

ally due to flood maps updates, albeit much less frequently than legally mandated (DHS Office of

Inspector General 2017). Such a map update is a source of information shock (Gibson and Mullins

2020, Bakkensen and Ma 2020, Hino and Burke 2021, Weill 2023), which may confound the disclo-

sure effect. In my empirical analysis, I test the robustness of my results against potential spillover

effects and changes in flood maps.

3 Data

Flood damage. I use damage records from the flood insurance adjuster’s report, which I acquired

through Freedom of Information Act requests. The damage amount is defined by the actual cash

value—a replacement value net of depreciation (FEMA 2014). I observe individual property level

damage with loss date, community ID, and building type. I restrict the sample to damage records

from single-family houses that has sustained the largest flood event for a given community-year.

Then I collapse the data to the community-year level to merge it with the flood size data.

Flood size. I construct hydrology-based community-year-level flood size data using daily water

volume records from over 3,000 USGS and NOAA stations (Gourley et al. 2013, Mallakpour and

Villarini 2015, Slater and Villarini 2016). Under this approach, flood size is characterized by the re-

currence interval, or the expected number of years for a flood of similar magnitude to reoccur. This

measure can be heuristically understood as deviations from long-term, gauge-specific averages. Im-

portantly, this objective and comprehensive gauge-based flood data is a major step forward in mea-

suring flood exposure, which is a crucial for estimating credible climate damage functions (Hsiang

2016). Further details on background, procedure, summary statistics, and validation on the flood

data are in Appendix A.

Population and vacancy rates. I use census-block-level population and vacancy rate data from De-

cennial Censuses.7 To account for changing block boundaries and resulting one-to-many matches

across different Decennial Census years, I calculate the weighted sum of count variables using inter-
7A property is considered vacant if no one is residing in the unit at the time of enumeration unless its occupants are

only temporarily absent (US Census Bureau 2000).
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Table 3.1: Summary Statistics for Key Variables

Variables Min. Q25 Median Mean Q75 Max. N

Prob. of Having Any Damage 0 0 0 0.042 0 1 529,394
Flood Damage Per Community ($) 0 0 0 33,655 0 579,990,057 529,394
N of 2-Year Floods (For 20 Years) 0 9 11 11.2 13 20 7,821
Census Block Population 0 0 10 34.5 40 7,597 1,483,356

polation weights from the NHGIS block-to-block crosswalk (Manson et al. 2022).8 I also complement

the Decennial Census data with Census Place-level population data, the smallest unit with annual

population information. In practice, I leverage data from Gallagher (2014), which links communi-

ties to Places for the purpose of obtaining annual community population estimates, and extend it to

cover additional years as necessary.9

Other data sources. To determine flood risk profiles of census blocks or communities, I use the

Q3 map—the first generation of a digitized flood map—that reflects flood risk as of the mid-1990s

(FEMA 1996). Also, the primary data source to track the disclosure requirement legislative history

is the Nexisuni database. I cross-validate this database with prior studies on the disclosure require-

ment (Washburn 1995, Pancak et al. 1996, Lefcoe 2004) and reports from the National Association

of Realtors (National Association of Realtors 2019). For flood map update records, I leverage the

Community Map History table from FEMA’s Flood Insurance Study (FIS) reports.10

Descriptive statistics. Table 3.1 shows summary statistics for the main variables used in the em-

pirical analysis. Flood damage and occurrences are for the NFIP communities in my sample and

population figures are for the census blocks within the optimal bandwidth from Table 5.1 column

(2). A notable aspect of the data is the high prevalence of zeros among the dependent variables. For

instance, 95 percent of the observations of community-level flood damage per housing unit and 27
8For instance, block G06000104003003006 in 2000 is matched to five different blocks in 2010 ending in 3010, 3011,

3017, 3020, and 3028. More generally, 26% of blocks from 2000 and 41% from 1990 are matched to multiple blocks in
2010. Interpolation weights represent the expected proportion of the source block’s counts (e.g., population or housing
units) located in each target block (Manson et al. 2022).

9A community, as defined by the NFIP, is a local political entity (e.g., village, town, city) that is similar to, but not
always aligned with, a US Census Place (Gallagher 2014).

10Practically, I extract the information from the National Flood Hazard Layer (NFHL). The Community Map His-
tory table serves as a credible source for tracking map revisions; for example, flood map panel notes, “For community
map revision history, refer to the Community Map History table located in the FIS report for this jurisdiction.” An
alternative source is FEMA’s Compendium of Map Updates (Hino and Burke 2021), which documents all changes,
including both revisions and initial mappings, to the flood maps. However, I prefer the NFHL as my focus is on identi-
fying revisions to the Q3 map. Further details and validation of the NFHL map revision data are in Appendix B.
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percent of observations for the block population are zero. In addition, these variables also exhibit

substantial skewness (long and thin right tails), as the difference between median and mean values

suggests. To account for this, I follow Chen and Roth (2022) and estimate extensive and intensive

margin effects separately in my regression models.11 Also, in Appendix B, I show that the frequency

of zeros in my data is consistent with external sources.

4 The Effect of the Disclosure Requirement on Flood Damage

4.1 Estimation Framework

Conditional on flood size, how does flood damage change after the disclosure requirement? To an-

swer this question, I estimate a damage function, which is a mapping between flood size and damage,

and show how the functional relationship changes due to the policy. As Hsiang (2016) notes, a cru-

cial step in estimating any damage function is constructing an objective and continuous measure of

exposure, and this paper leverages the hydrology-based flood history dataset described in Section 3.

Damage =
∑

k

[αk
1F

k + αk
2F

kD] (1)

Consider equation (1), where the dependent variable is flood damage for a community, D is an in-

dicator variable for the disclosed group and F k is an indicator variable equal to 1 when the annual

maximum flood size is in bin k where k ∈ {2-5, 5-10, 10-20, 20-30, 30-50}.

Here, floods of size 1–2 serve as the omitted category, and thus αk
1 represents the additional dam-

age when a community in a state without a disclosure policy in force experiences a flood of size k, as

opposed to a flood of size 1–2. αk
2 allows a different damage function slope for the disclosed group for

flood size k. Equation (1) follows a non-parametric approach of Barreca et al. (2016), which lets the

data rather than the functional form assumption, determine the shape of the damage function.

I focus on flood sizes 1–50 for the main analysis because (1) larger floods are accompanied by inter-

related perils, which cause substantial measurement errors (Kron et al. 2012), (2) chosen flood sizes

cover a wide enough band to capture floods of different severity, from minor to major (Appendix

Table A.2), and (3) the frequency of flood events reduces exponentially as flood size increases, which
11This approach resonates with a hurdle or two-part model, which is used extensively in modeling health expendi-

tures that are characterized by a similar distribution (Mullahy and Norton 2022).
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impose challenges on statistical power (Appendix Figure A.3 (b)). However, I also show that the

results are robust to the expansion of flood sizes to 100.

The assumption behind binning is that the outcome is identical within each k. While flood sizes

of 31 and 49, for example, are likely to have a different effect in reality, I choose bin sizes to strike

a balance between flexibility and precision. Also, measuring flood exposure using F k implies that

smaller floods in the same community-year are ignored. However, this is unlikely to be a practical

concern because as Appendix Figure A.3 (c)-(d) show, 65% (95%) of community-year had just one

flood over size 2 (10).

Damage =
∑

k

[βk
1F

k + βk
2F

kI + βk
3F

kD + βk
4F

kID] (2)

Equation (2), which mirrors a canonical difference-in-differences model, shows how equation (1)

changes when the post disclosure indicator I is introduced. The coefficient for the interaction term

(βk
4 ) captures the disclosure effect.

Ymtd =
∑

k

[βk
1F

k
mtd + βk

2F
k
mtdImtd + βk

3F
k
mtdDmtd + βk

4F
k
mtdImtdDmtd] + θmd + ωtd + ϵmtd (3)

For estimation, I take a stacked difference-in-differences approach as equation (3) to overcome

potential bias from conventional two-way fixed effect models (Cengiz et al. 2019, Brot-Goldberg et

al. 2020, Goodman-Bacon 2021). In equation (3), Ymtd is either an indicator variable for positive

flood damage (extensive margin), or log(Damage) conditional on positive damage (intensive margin),

for community m, in year t for data stack d.12 I include year × stack (ωtd) and community × stack

(θmd) fixed effects, to account for overall time trend and unobserved community characteristics.

Importantly, I use late adopting states as a control group in equation (3) because as Appendix

Table D.3 shows, (1) the 22 never-adopted states are different in demographic, economic, and po-

litical characteristics from the 26 ever-adopted states but (2) such a difference does not appear in

the early—14 states that have implemented the policy by 1994—vs. late—12 states implemented

after 1994—adopting states comparison.13 Thus, each stack d consists of communities in the treated
12While I report both the extensive and intensive margin effects, an emphasis is on the former due to greater

generalizability—only a small fraction of communities experience repeated damage—and higher statistical power.
13Deshpande and Li (2019) also exploit the timing of treatment because eventual treatment status was predictable

based on covariates. Roth and Sant’Anna (2023) also states that in non-experimental contexts, the quasi-randomness in
identifying variation may be more plausible when never-treated units are excluded.
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states, which adopted the disclosure policy in year t∗, and communities in the control states, which

adopted the policy in t̃ > t∗.14 Each d covers a window of 10 years before and after t∗.15 I drop

observations from the control states for t >= t̃ because they are no longer “not-yet-treated”.

Because the impact of natural disasters is not confined by administrative units, previous studies

on cyclone damage function have used spatial-HAC standard errors (Hsiang 2010). Following this, I

allow spatial correlation of up to 500 miles for inference (Newey and West 1987, Conley 1999), but I

also show that state-level clustering produces similar results.16

4.2 Findings

In Figure 4.1, I plot the damage functions for the (a) control—not-yet-disclosed—and (b)

treatment—disclosed—groups using the estimated coefficients from equation (3). For instance, β̂k
1

and β̂k
1 + β̂k

3 for each k are used to plot the pre-treatment period damage functions for Panels (a)

and (b), respectively. Because the dependent variable in Figure 4.1 is the probability of any damage,

the estimated coefficients indicate the additional probability of damage when the baseline flood

(k = 1 − 2) is replaced by a flood of size k. In Appendix Figure D.5, I reproduce Figure 4.1 with a 95%

confidence interval.

Figure 4.1 allows visual inspection of the estimated damage function. To begin, I first focus on the

slope, which reveals a monotonically increasing relationship between flood size and the probability of

any flood damage. Further, high risk communities in Panels (c)–(d) (an above-median fraction of the

area covered by an SFHA) have much higher vertical levels and steeper slopes in comparison to the

low risk communities in Panels (e)–(f), which further validates the estimated function.17

Table 4.1 highlights the impact of the disclosure requirement on flood damage. For brevity, I only

report β̂k
4 from equation (3), but the full sets of coefficients are in Appendix Table D.4. In column

14Stack refers to data that is created for a specific treatment year (or a cohort year). A state can belong to both
treatment or control groups depending on the stack. For instance, PA and CT, which changed their policy in 1996 are
in the “treatment group” in a stack for t∗ = 1996. The two states belong to the “control group” when t∗ < 1996.

15IN, NY, and SC implemented the policy in 2002, leaving only one not-yet-treated state, LA, which adopted the
policy in 2003. I show that my results are robust even when excluding the 2002 adoption cohort from the treated
units—namely, utilizing IN, NY, and SC solely as control (i.e., not-yet-treated) units.

16Weights in this matrix are uniform up to that cutoff distance. When the variance-covariance matrix is not positive-
semidefinite, I use eigendecomposition of the estimated variance matrix and convert any negative eigenvalue(s) to zero
following Cameron et al. (2011).

17To illustrate this point, consider two communities, A and B, with distinct risk profiles: A is entirely within the
SFHA, while B lies outside it. During a 100-year flood, all properties in A (B) are expected to be underwater (unaf-
fected) by the definition of SFHA, and thus damage should be significantly larger for community A.
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Figure 4.1: The Effect of Disclosure on the Damage Function. These plots illustrate estimated damage func-
tions (dep.var: probability of any damage) from equation (3). Panels (a)–(b) are damage functions for all
communities. Panels (c)–(d) and (e)–(f) illustrate the damage functions for high (above–median SFHA ratio)
and low (below–median SFHA ratio) flood risk communities, respectively. Appendix Figure D.5 reproduces
Figure 4.1 with 95% confidence intervals.
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Table 4.1: The Effect of Disclosure on Flood Damage

Prob. of Any Damage Log Damage
(1) (2) (3) (4)

Post × Disclosure (Size 2-5) −.035∗ −.056∗∗ −.012 −.134
(.021) (.028) (.011) (.300)

Post × Disclosure (Size 5-10) −.042∗ −.055∗ −.030 .164
(.022) (.030) (.018) (.243)

Post × Disclosure (Size 10-20) −.076∗∗ −.090∗ −.057∗∗ .051
(.037) (.052) (.023) (.210)

Post × Disclosure (Size 20-30) −.082∗ −.131∗∗∗ −.019 .467
(.049) (.043) (.070) (.554)

Post × Disclosure (Size 30-50) −.119∗ −.173∗∗ −.071 −.334∗∗

(.063) (.078) (.055) (.133)
Annual Effect -0.027** -0.039** -0.014 -0.003

(0.013) (0.017) (0.01) (0.109)

Sample All High SFHA Low SFHA Damage > 0
Year × Stack FE X X X X
Community × Stack FE X X X X
Num. obs. 529394 254989 274405 22319
Note: The dependent variable in columns (1)–(3) is the probability of any flood damage. Column (1) uses the full sam-
ple of communities, while columns (2) and (3) repeat the analysis for subsamples of communities with different levels
of flood risk exposure. The dependent variable in column (4) is log-transformed flood damage. Spatial-HAC standard
errors, allowing for spatial correlation up to 500 miles, are used for inference. ∗p < 0.1; ∗∗p < 0.05; ∗∗∗p < 0.01.

(1), I report that the disclosure requirement reduces the probability of having any flood damage by

4–12 percentage points for different values of k for the communities in the disclosed states relative to

the ones in the not-yet-disclosed states. The damage reduction effect can be verified visually as well:

Figure 4.1 shows that in Panel (a) (not-yet-disclosed), flood probability has substantially increased

over time, whereas in Panel (b) (disclosed), it remains nearly identical.

Using equation (4), I summarize the coefficients in Table 4.1 into probability-weighted average

treatment effects. Note, because Pr(K = k) is the annual likelihood of occurrence for flood size k

and βk
4 is the change in probability of having damage from flood size k, equation (4) can be inter-

preted as the reduction in annualized damage probability due to the disclosure policy.18 For infer-

ence, I use the delta method. ∑
k

Pr(K = k) × βk
4 (4)

In Table 4.1 column (1), I report that the reduction in the annualized damage probability is 2.7

percentage points. When I compare this with the baseline of 7.1—average probability of having
18Since the flood size is defined by recurrence interval, the inverse of the size corresponds to P r(K = k). For in-

stance, the probability of having a flood of size 30–50 in a given year is 1
40 .
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any damage conditional on exposure to a flood of size 2 or larger—the effect size is a 38 percent

reduction.19 In columns (2) and (3), I show that the reduction in annualized damage probability

is nearly three times larger for high-SFHA communities than for low-SFHA communities, which is

consistent with the fact that the treatment intensity is higher for high-SFHA communities.

Column (4) reports the intensive margin effect, where the dependent variable is the log of dam-

age. Because the sample for this exercise is restricted to community-years with positive damage, the

model is underpowered. Still, I find evidence that the disclosure policy reduces damage for communi-

ties with repetitive flood events for the costliest flood category (k = 30 − 50).

Figures 4.1 provide initial insights into the mechanism behind the damage reduction effect. Panel

(c) shows that, in the absence of a disclosure policy, flood damage has significantly increased over

time in high-risk communities. In contrast, Panel (d) reveals that high-risk communities in disclosed

states did not experience such an increase, presumably because the policy helped limit the rise in

flood risk exposure. In the next section, I directly test this conjecture by estimating the impact of

the disclosure policy on population distribution. Notably, the damage reduction effect of the policy is

much smaller for low-risk communities in Panels (e) and (f), where disclosure intensity is lower.

Robustness checks. In Appendix Table D.5, I estimate equation (3) using placebo states and find

that damage from larger (k = 30 − 50) floods increases after the disclosure policy in these states.20

This aligns with Figures 4.1 (a), which show rising flood damage over time in the absence of flood

risk information from the disclosure policy. In Appendix Figure D.6, I present an event study plot

corresponding to column (1) of Table 4.1. It shows no pre-trend and persistent reduction in the

probability of damage for larger floods after the disclosure policy. Finally, Appendix Tables D.6, D.7,

D.8, D.9 demonstrate that the results in Table 4.1 remain robust to excluding communities with map

revisions, clustering standard errors at the state level, expanding the flood size threshold from 50 to

100, and excluding the 2002 adoption cohort from the treated group, particularly for the annualized

effect estimates.
19The baseline probability might seem low, but for larger floods, the probability of damage is substantially higher.

For instance, for a flood of size between 20 and 50, the baseline probability is 21 percent. Additionally, it should be
noted that the damage data comes from the flood insurance adjuster’s report, so for areas with little to no flood insur-
ance policies, damage probabilities are low by construction. For reference, as of 1995, about 1/3 of communities had no
flood insurance policies.

20For statistical power, in Appendix Figure D.6 and Appendix Table D.5, I estimate a more parsimonious version of
equation (3) by grouping flood events into baseline (k = 1 − 2), small (k = 2 − 30) and large (k = 30 − 50).
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5 The Effect of the Disclosure Requirement on Population

5.1 Estimation Framework

To assess whether the damage reduction effect in Section 4 arises from lower flood risk exposure due

to the disclosure—specifically, relative population declines in risk-prone areas—I begin by analyzing

annual community-level population data using the triple difference design in equation (5).

log(Ymstd) = α0HmIstd + α1HmDstdIstd + ωstd + ψmd + ϵmstd (5)

Ymstd denotes population for community m in state s in year t in stack d. Hm is an indicator variable

for high-SFHA communities, equal to one if m has an above-median fraction of the area in an SFHA.

Istd is a post disclosure indicator and Dstd is a disclosure group indicator. Other terms in a standard

triple difference model are subsumed by fixed effects. α1 captures the disclosure policy’s impact on

population in high-risk communities relative to low-risk communities in the post-period.21

Since equation (5) exploits the staggered, year-by-year adoption timing across states, it can ad-

equately control for the impact of potentially concurrent flood policy changes. However, because

communities do not perfectly align with Census Places (Gallagher 2014), and not all Census Places

appear on the Q3 flood map, half of the communities in the sample are excluded from the estimation.

Moreover, since location responses to flood risk are typically local (Elliott and Wang 2023), α1—

which cannot capture intra-community relocation—may significantly underestimate the disclosure

policy’s effect on reducing risk exposure.

Thus, I complement equation (5) by analyzing census block-level population data, leveraging a spa-

tial discontinuity in flood risk information from the disclosure at the SFHA border.22 Importantly,

because other policies such as flood insurance requirements also change at the border, I employ a

difference-in-discontinuity approach following Grembi et al. (2016) and Gottlieb et al. (2022), which
21For details on creating data stack, see Section 4.1.
22While Noonan et al. (2022) shows that (true) flood risk changes continuously at the border in Texas, true risk may

change more abruptly in other states within my sample. However, because flood risk, which is largely a function of
land contour, is likely to remain stable at least in a relatively short term, such differences will also be controlled by the
difference-in-discontinuity approach.
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controls for time-invariant cross-sectional differences between non-SFHA and SFHA areas.23

Ybst =δ0 + δ1Xbs + δ2Dbs + δ3Xbs ∗Dbs+

Tst[δ4 + δ5Xbs + δ6Dbs + δ7Xbs ∗Dbs] + ϵbst

(6)

In equation (6), Ybst represents population outcomes in block b in state s in time t. Xbs is the dis-

tance between a block border and the closest SFHA border in meters (negative if in a non-SFHA

area), which is approximated by taking the difference of (1) the distance between block centroids

and the closest SFHA border and (2) a block diameter. Dbs = 1 if Xbs > 0 is a high risk group (i.e.,

SFHA) indicator variable, and Tst = 1 if t > T ∗
s is a post disclosure-period indicator variable, where

T ∗
s is the policy change date for s. δ6 captures the impact of the disclosure policy for blocks located

in close proximity to the border.

To estimate δ6, I first estimate the optimal bandwidth for each outcome variable. Then, I esti-

mate equation (6) using blocks within the optimal bandwidth (Calonico et al. 2014, Cattaneo et al.

2019).24 For states that implemented disclosure policies between 1990-1999 (2000-2009), the 1990

(2000) decennial census is used to estimate δ0 to δ3 whereas 2000 and 2010 (2010 and 2020) decennial

censuses are used to estimate δ4 to δ7. Throughout Section 5, standard errors are clustered at state—

the level of disclosure treatment. Also, I remove 17% of blocks that contain SFHA borders from the

analysis because Xbs may not be well defined for them.

Notably, as Grembi et al. (2016) points out, equation (6) differs from studies that apply a

difference-in-differences approach within a regression discontinuity (RD) style sample to improve

comparability between treated and control units (Greenstone and Gallagher 2008, Lemieux and

Milligan 2008, Pettersson-Lidbom 2012), as their identification still relies on the parallel trends

assumption.25 In contrast, in equation (6), identification rests on the assumption that there are no

other important time-varying differences at the discontinuity.26

23There might be a concern for time-varying policy changes at the border as well. I test robustness in Section 5.2.
24I estimate the mean squared error optimal bandwidth for 2000 and 2010 and take the average of them following

Grembi et al. (2016). I ignore 1990 and 2020 because these years have only a subset of the states in the sample.
25Analyzing the decennial data using a version of equation (5) has at least two critical challenges. First, there is

only a single post-treatment period because, by 2010, there are no “not-yet-treated” states remaining. Second, there is
only one pre-treatment period unless I forgo about 80% of observations due to the 1980 Census covering only urban or
metropolitan areas. Note that these issues do not arise in my analyses using annual data.

26Thus, the discussion in Section 4.1 on control group selection—between never-treated and not-yet-treated units—is
irrelevant for equation (6) as identification relies on the cross sectional differences between SFHA and non-SFHA areas,
before and after the disclosure policy, within ever-disclosed states. This contrasts with equation (3), which compares

15



5.2 Findings

Table 5.1: The Effect of Discosure on Net Population Flow

Log
Population

Prob. of Any
Population

Vacancy
Rate

(1) (2) (3) (4)
High SFHA × Disclosure × Post −.017∗∗

(.007)
SFHA × Post −.074∗∗ −.011∗∗∗ .014∗∗∗

(.030) (.003) (.004)
State × Year × Stack FE X
Community × Stack FE X
Avg D.V. 0.675 0.095
Bandwidth 301 138 262
Num. obs. 239471 1915717 1483356 1700002
Note: Column (1) is estimated based on equation (5) using annual Census Place population estimates. Columns
(2)–(4) are estimated based on equation (6) using the decennial census block-level data. Standard errors are
clustered at the state level. ∗p < 0.1; ∗∗p < 0.05; ∗∗∗p < 0.01.

Table 5.1 column (1) shows that the disclosure policy reduces population in high-risk

communities—where disclosure treatment intensity is higher—relative to low-risk communi-

ties by 1.7%. This suggests that some homebuyers respond to disclosure by choosing homes in

lower-risk communities rather than high-risk ones, thereby reducing flood risk exposure. However,

the magnitude of this effect may be attenuated since homebuyers can substantially lower their flood

risk without necessarily making a large location adjustment. For instance, 58% (74%) of recipients in

FEMA’s buyout program for flood-prone properties relocate within a 10-mile (20-mile) drive of their

original homes while still reducing their flood risk score by over 60% (Elliott and Wang 2023).

Motivated by this, in columns (2)–(4), I exploit census block-level data to explore more granular

location responses, with a caveat that δ6 in equation (6) represents the local average treatment effect

near the SFHA boundary. While the magnitude may differ in other areas unless homogeneity in

treatment effect is assumed, it should be noted that the SFHA boundary still captures a substantial

portion of flood-prone locations, given that only 8% of a typical community land falls within SFHA

(Appendix Figure D.4). In column (2), I examine the intensive margin effect, focusing on blocks

with a non-zero population, and finds a 7 percent reduction in SFHA population relative to non-

SFHA blocks after the disclosure requirement. Column (3) reports the extensive margin effect—the

disclosure reduces the probability of having any population in an SFHA block by 0.01 relative to a
disclosed vs. non-disclosed states—rather than SFHA vs. non-SFHA.
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non-SFHA block (or 1.5 percent of the baseline value of 0.68).27 Consistent with these population

effects, in column (4), I report that the disclosure increases the vacancy rate for an SFHA block from

0.095 to 0.109. These findings resonate with prior research on population declines in areas affected

by negative environmental shocks (Banzhaf and Walsh 2008, Boustan et al. 2012, Hornbeck 2012,

Hornbeck and Naidu 2014).

Figure 5.1 (a), corresponding to column (2) of Table 5.1, illustrates the impact of disclosure policy

on the population. The horizontal axis is X in equation (6) and blocks with D = 1 are presented on

the right-hand side of the border. The vertical axis is the difference in log population between pre

and post treatment periods. The solid lines is the regression fit and points reflect the difference in

log population for each distance bin. δ2 from equation (6) is normalized to 0 to enhance readability.

The figure indicates there is a 7 percent drop in the population for SFHA blocks relative to non-

SFHA blocks at the SFHA boundary after the disclosure requirement. The tight fit of the regression

line to the scatter plot suggests that the choice of functional form for the running variable likely has

minimal impact on the estimates. Importantly, as Figure 5.1 (b) shows, no such population change is

observed when a (placebo) disclosure requirement does not provide information on flood risk.

In Figure 5.1 (c), I plot coefficients correspond to δ2 from the equation Ybst = δ0 + δ1Xbs + δ2Dbs +

δ3XbsDbs, estimated separately for each time period relative to the disclosure policy change, and

normalized to δ2 at relative time -1.28 The analysis focuses on blocks that appear in at least four

decennial censuses, which implies that 80% of observations excluded due to the 1980 census covering

only urban or metropolitan areas. Although the results are underpowered due to this sample restric-

tion, Panel (c) indicates that there was no population difference between SFHA and non-SFHA areas

before the disclosure, but a 3-4% relative decline in SFHA area population after the disclosure. In-

terestingly, the raw population and housing units for an average SFHA block in Panel (d) remains

constant even after the disclosure, suggesting that the population adjustments stem from diverted

in-migration and suppressed development, rather than active out-migration. This is consistent with

the policy’s role in informing prospective buyers rather than existing homeowners.

Two potential concerns regarding the difference-in-discontinuity results merit attention. First,
27Note that the number of observations in column (2) is greater than in column (3), despite its sample restrictions

(i.e., focusing on non-zero population blocks), because the estimated optimal bandwidth is larger for column (2).
28Relative time indicators are defined as -2 (-1) for 19 to 10 (9 to 1) years before the policy change, and 0 (1) for 0

to 9 (10 to 19) years after the policy change.
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Figure 5.1: The Effect of Disclosure on Population. Panels (a) and (b) illustrate difference-in-discontinuity
estimates for the disclosed and placebo states, respectively. The dependent variable is the change in log of
population after the disclosure. The running variable is the distance between a census block and the nearest
SFHA border. The discontinuity at the threshold (dashed vertical line) represents δ6 in equation (6). Panel (c)
plots the disclosure effect over time relative to the disclosure policy change timing. Panel (d) plots population
and housing unit trends (in absolute terms) over time for SFHA blocks. For Panels (c) and (d), I limit the
sample to blocks that are observed in at least four decennial censuses.

time-varying confounders may affect the results. Over a 10-year period, many factors could change

differentially between SFHA and non-SFHA areas, such as the enforcement of flood insurance pur-

chase requirements. Second, the disclosure requirement may have a spillover effect (i.e., violate the

stable unit treatment value assumption (SUTVA)) (Donaldson 2015). For instance, homebuyers who

would have chosen properties on SFHAs may instead choose nearby properties in non-SFHAs after

the disclosure policy.

Per the first issue, it is useful to highlight that Table 5.1 column (1) reports that the disclosure pol-

icy reduces population in high-risk areas even when I use the annual data, mitigating concerns about

other time-varying policy changes. As for the second issue, strategic avoidance based on disclosure
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information is unlikely, as discussed in Section 2, since the policy only provides risk information for

a given property, not broader flood risk patterns. Additionally, in Appendix C.2, I conduct formal

robustness tests to further assess these concerns.

Taken together, the disclosure policy appears to reduce flood damage, presumably by prevent-

ing an increase in flood risk exposure through its effect of diverting in-migration. However, given

that purchasing insurance is a potential alternative to self-protection, namely choosing a safer loca-

tion (Ehrlich and Becker 1972), one might wonder about the disclosure’s impact on flood insurance

take-up decisions.29 Findings in Appendix C.1 show that take-up rates in high-SFHA areas do not

increase relative to low-SFHA areas after a disclosure policy change, suggesting that homebuyers

primarily respond through self-protection. Moreover, despite relative declines, the absolute number

of flood insurance policies in high-risk areas does not appear to decline (columns (3) and (6) of Ap-

pendix Table C.1). This implies that the damage reduction effect in Section 4.2 is not merely an

artifact of a decline in absolute flood insurance counts in high-SFHA areas.

Such a choice may reflect relative benefits and costs of the two protection measures: choosing

a safer location is often less costly for homebuyers, as they plan to move regardless and typically

consider more than 10 properties before closing (Zumpano et al. 2003). Moreover, the NFIP coverage

may provide limited benefits: it does not (1) cover asset losses over $250,000 and (2) compensate for

numerous economic costs (e.g., loss of income or use value) beyond asset losses (Lee et al. 2024).

6 Conclusion

Floods are the costliest natural disaster in the US and are expected to become more frequent and

severe in the future. Thus, reducing economic loss from these events is of first-order importance. By

exploiting plausibly exogenous variations created by a Home Seller Disclosure Requirement, I find

that the policy reduces the annualized probability of flood damage by 2.7 percentage points (or 38

percent from the baseline) by decreasing the population in high-risk areas. These findings indicate

that alleviating information frictions regarding flood risk in the housing market can facilitate volun-
29Investigating both margins is important because they have starkly different implications for flood damage. Self

protection can reduce flood risk exposure whereas buying insurance simply redistribute income from “dry” to “flood”
state, without reducing exposure unless self-protection is rewarded with lower insurance premiums (Ehrlich and Becker
1972). However, the NFIP premium is heavily subsidized and too coarse to account for all self-protection measures
(Kousky 2019). Wagner (2022) also finds that substitution between two margins is prevalent in the NFIP context.
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tary adaptation by helping homebuyers make more informed choices. Further, given that compliance

costs for this policy are likely moderate at most,30 the disclosure requirement should produce a large

social welfare gain.

30Moore and Smolen (2000) documents that home sellers spend less than 40 minutes to fill out the disclosure form.
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A Appendix A: Flood History Data

A.1 Background and Procedure

Background. A key input to the flood damage function is flood size data. I create a measure that
satiesfies the following four conditions. First, it should be a continuous measure that allows a non-
linear relationship between flood size and damage (Burke et al. 2015, Hsiang 2016).

Second, it should be objective. For instance, the widely used EM-DAT measures flood size using
economic cost or death tolls, which are directly correlated with outcome variables of interest (Felber-
mayr and Gröschl 2014). Another example of a potentially endogenous measure is the occurrence of
the Presidential Disaster Declaration (PDD) floods, which depends on the discretion of the president
and thus could reflect political interests (Reeves 2011).

Third, it should be comprehensive. A few existing studies have leveraged meteorological measures
to objectively measure disasters, but most of them focus on a subset of events. For instance, Deryug-
ina (2017), Hsiang and Jina (2014), and Strobl (2011) have used physical measures of hurricane
intensity while Davenport et al. (2021) leveraged precipitation data. Despite objectivity, such an
approach has limits in coverage—for instance, precipitation changes alone can explain only one-third
of cumulative flood damages (Davenport et al. 2021).

Lastly, since I measure flood damage at the community by year level, flood size should be mea-
sured at the same level. This is not trivial because most climate data are collected to answer physi-
cal science questions, and thus are not readily mapped into an administrative unit such as a commu-
nity (Carleton and Hsiang 2016).

To the best of my knowledge, no existing dataset satisfies all of these properties. In this paper,
I construct an objective measure of past flood events by applying a hydrologic method to the
USGS/NOAA water gauge records. This approach does not distinguish the cause of floods—
hurricanes, rainfall, snow melt, etc, as long as it is reflected in the water gauge level. Flood size is
defined and recorded by a recurrence interval, which represents the expected number of years for a
flood of a given size to come back, and thus is continuous by construction. Also, by matching gauge
stations to a community, I can measure flood size at the community level.

Procedure. Following the USGS guideline (England Jr et al. 2019), I implemented the following
steps using USGS/NOAA water levels data from 3,505 gauge stations distributed in the 26 ever-
disclosed states in the contiguous US (Appendix Figure A.1).31

First, I construct a site-specific flood frequency distribution. For this, I retrieved annual peak flow
records using the R package “dataRetrieval” and fit the Log-Pearson III distribution to estimate
gauge-specific parameters (Cicco et al. 2018). Importantly, as I use annual peak discharge data to
fit the distribution, the quantile of the distribution has an intuitive interpretation. For instance, if
a certain water level is the 95th percentile of the distribution, it means that such an event would
happen with a 5 percent probability in a given year. Equivalently, such an event is called a 20-year
( 1

0.05 = 20) flood. I keep stations with at least 10 or more annual peak observations following the
USGS guideline. Also, I use annual peak data until 1990, from gauge stations with at least 10 an-
nual peak observations following the USGS guideline, to fix flood thresholds and make flood size
comparable across different years.

Second, I convert the daily water level into the recurrence interval using the fitted flood size dis-
tribution from the previous step. For this, I need an instantaneous flow, because flood exposure is
determined by the maximum, rather than mean, water level. The problem is that for most of the
stations, the maximum daily flow (or more precisely the instantaneous peak flow which enables cal-

31I randomly sampled 1000 sites in Appendix Figure A.1 for visibility.
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Gauge Location

Figure A.1: The Distribution of a Sample of USGS/NOAA Gauges in Disclosure States

Table A.1: Number of Stations with Non-Missing Water Levels Records in Iowa

Name 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998

N Gauges (Mean Daily Flow) 112 112 105 107 109 109 105 109 112 111
N Gauges (Maximum Daily Flow) 3 8 40 72 34 31 29 34 59 95

culating maximum daily flow) data have too many missing values. This is problematic because, with
many missing observations, flood events will be significantly under-recorded. To overcome this prob-
lem, I estimate a projected instantaneous peak flow from the mean daily flow. Appendix Table A.1
illustrates the benefit of using mean daily flow in alleviating the missing data problem. For this, I
report the number of water gauge stations in Iowa that have daily water level records for at least 80
percent of the days (i.e., 292 days or more) for a given year. It can be easily seen that there can be
an order of magnitude difference in the number of stations that have mean versus maximum daily
water records.

To estimate the daily maximum water level from the daily mean water level, I use the Fuller
method in the following steps (Fuller 1913).32 Step 1, I list up gauge stations that (1) are located
in a given geographic units (state, HUC4, and HUC2) and (2) have both instantaneous peak flow
(QIP F

it ) and mean daily flow (QMDF
it ) records.33 Step 2, using these gauge stations, I estimate Fuller

coefficients using equation (7) (Fuller 1913).34 Step 3, using the estimated coefficients, I calculate the
projected instantaneous peak flow and compare that with the actual instantaneous peak flow to pick
the geographic unit (state, HUC2, HUC4) that minimizes the prediction error for each gauge. Step
4, using the chosen Fuller coefficients, I estimate instantaneous peak flow for gauges that only have
daily mean flow records.

QIP F
it = QMDF

it (1 + αAβ) (7)
32I also did conversion following Sangal (1983), but the error between actual and the estimated IPF was much

smaller with Fuller (1913).
33A watershed is uniquely identified by a hydrologic unit code (HUC). There are six levels in the hierarchy, and

HUC2 (regions) and HUC4 (sub-regions) are the two highest levels. There are a total of 18 and 202 HUC2s and HUC4s
in the contiguous US (Maimone and Adams 2023).

34I manipulate equation (7) as QIP F
it

QMDF
it

− 1 = αAβ and take log on both sides to estimate α and β.
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Now, by converting the estimated instantaneous peak flow to the quantile of the estimated Log-
Pearson III CDF from step 1, I identify each day’s flood size.

Third, I translate the quantiles into recurrence intervals and take the maximum recurrence interval
for each year.35

Finally, to translate gauge-level flood events to community-level data, I match each community
to its three nearest gauges, determined by the distance between the community’s centroid and the
gauge stations. I then calculate a community-level flood size using an inverse distance-weighted aver-
age of the flood sizes recorded at these gauges. Appendix Figure A.2 (b) presents the distribution of
the average distance between gauges and community centroid. Over 90 percent of them are within 20
miles with a median distance of 13 miles.
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Figure A.2: Flood Frequency Analysis and Gauge Matching. Panel (a) is an example of flood frequency analy-
sis. The black solid line represents the CDF of the fitted Log-Pearson III distribution using annual peak flows
from the USGS site 03251000. If a daily discharge volume is 8,500 CFS, it corresponds to the 90th quantile or
a 10-year flood. Panel (b) presents the distribution of the distance between a gauge and community centroid.
Over 90% of them are within 20 miles with the median distance 13 miles.

Appendix Figure A.2 (a) illustrates how to construct flood size from the daily water level using a
site-specific flood frequency distribution. The black solid line is the fitted Log-Pearson III CDF from
the USGS site 03251000. To fit the distribution, I use the annual peak flow data from 1947 to 1990
to calculate the mean, standard deviation, and skewness parameters. Now suppose that on a given
date, the daily discharge volume is 8,500 CFS. As it corresponds to the 90th percentile of the CDF,
it can be concluded that there was a 10-year flood on that day.

Note, because the USGS gauge stations rarely cover coastal areas, I add 45 additional NOAA sites
to the gauge station data. Zervas (2013) documents GEV distribution parameters for all NOAA
sites, so I adopt them and calculate gauge specific recurrence intervals. NOAA water level data are
retrieved using the R package “Rnoaa” (Edmund et al. 2014).

Unified flash flood database. The Unified Flash Flood Database (Gourley et al. 2013) is a USGS-
gauge record-based dataset constructed following a similar procedure described above. It is a com-
prehensive and objective measure of flood events that can present the overall trend of flood events
for the contiguous US, which overcomes many limitations of the existing data. However, I have opted

35The recurrence interval for quantile q is 1
1−q

. For instance, a discharge volume of the 90th percentile, which means
it is the 90th highest among 100 yearly maximum observations, corresponds to a 10-year flood.
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not to utilize this database due to its likely substantial underreporting of flood events. This underre-
porting arises because the database is constructed using instantaneous peak flows, which, as shown
in Appendix Table A.1, have a significant number of missing observations (and missing data is re-
garded as “no flood”).

A.2 Validation and Summary Statistics

To validate the flood history data, I check the number of average 2-year flood events over a 20-year
period for the 7,821 communities from the 26 ever-disclosed states that are on the Q3 map. By def-
inition, a 2-year flood happens 10 times in a 20-year period on average. Figure A.3 (a) shows that
most communities had ten 2-year floods over the 20 years whereas the average number of 2-year
floods is 11.1. While this is slightly higher than 10, it is plausible given that I stop updating annual
peak flow beyond 1990 for consistency over time. Although this approach can be problematic as the
period in consideration gets longer, it should not be a major problem for this paper as the sample
period is 20 years.

Figure A.3 (b) shows the distribution of flood size (i.e., recurrence interval), where flood size is
truncated at 100 for readability. As well documented in the literature, the histogram follows a log-
normal distribution, and the frequency decreases as an inverse power function of the flood size (Jack-
son 2013).

In Panel (c), I plot the number of unique flood events for each community-year, conditional on
having an event with a flood size between 2 and 50. The histogram shows that 65 percent of the
community-years have exactly one event. This alleviates a concern over measuring flood exposure
as the maximum flood size for a given year. More importantly, when I limit attention to floods
with size over 10 in Panel (d), which incurs disproportionately large damage, 95 percent of the
community-year pairs have only one such event.

Table A.2: Comparing the Estimated Flood Size Thresholds with the NWS Threshold

2 Year Flood 10 Year Flood 50 Year Flood 100 Year Flood

Minor 0.778*** 1.285*** 1.74*** 1.944***
(0.052) (0.071) (0.102) (0.124)

Moderate 0.594*** 0.994*** 1.36*** 1.526***
(0.042) (0.06) (0.085) (0.103)

Major 0.45*** 0.771*** 1.081*** 1.226***
(0.034) (0.043) (0.051) (0.06)

Note:
Note: The entries report the results from 12 separate regressions where
each column represents four different dependent variables and each row
represents three different regressors. Standard errors are clustered at the
gauge level. ∗p < 0.1; ∗∗p < 0.05; ∗∗∗p < 0.01.

For further validation, in Appendix Table A.2, I compare flood size with the gauge-specific NWS
thresholds for minor, moderate, and major floods.36 Specifically, I estimate equation (8) where Qik

is the estimated flood threshold for site i for flood size k where k ∈ {2, 10, 50, 100}. NWSij is flood
thresholds from the NWS for site i for flood severity j where j ∈ {minor, moderate, major}.

36NWS defines each flood category as the following (National Weather Service 2019). Minor: minimal or no property
damage, but possibly some public threat (e.g., inundation of roads). Moderate: some inundation of structures and
roads near a stream, evacuations of people, and/or transfer of property to higher elevations. Major:extensive inundation
of structures and roads, significant evacuations of people, and/or transfer of property to higher elevations.
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Figure A.3: Flood Data Summary Plots. Panel (a) shows the distribution of the number of 2-year flood
exposures at the community level over 20 years. Panel (b) shows the distribution of flood event size (i.e.,
recurrence interval), where flood size is truncated at 100 for readability. Panel (c) illustrates the number of
unique floods (size over 2) for community-year. Panel (d) repeats Panel (c) for floods with size over 10.
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Qik = βNWSij + ϵijk (8)

β is the coefficient of interest which illustrates how comparable the two thresholds are. For this
analysis, I use 2,093 sites that have both recurrence interval-based flood size and the NWS flood
thresholds. Appendix Table A.2 reports the estimated β for 12 separate regressions and provides
useful insights. First, a minor flood from the NWS is comparable to a flood of size between 2 and
10. To see this, observe that when a minor threshold increases by 1 unit, a 2-year flood threshold
increases by only 0.78 units. Conversely, when a minor threshold increases by 1 unit, a 10-year flood
threshold increases by 1.29 units. Second, a 10-year flood threshold is tightly comparable to a moder-
ate flood threshold (β = 0.99). Similarly, a 50-year flood closely matches a flood with a major impact
(β = 1.08). Note, a 100-year flood threshold is 23 percent higher than a major flood threshold, which
is plausible given that a 50-year flood threshold is comparable to the major category. The monotonic
relationship between the recurrence interval based flood size and NWS impact metric adds further
credibility to the adequacy of the flood history data.

B Appendix B: Additional Data Validation
Key dependent variables. A prevalence of zeros are consistent with findings from external sources.
For flood damage, no prior studies have cataloged the fraction of community-years with zero flood
damage. However, a back-of-the-envelop calculation suggests that this statistic is in line with exist-
ing studies. For that, I take the average probability (1.45 percent) of filing a claim per policy over
1980–2012 from Kousky and Michel-Kerjan (2015) and multiply it by the number of flood insurance
policies by the community in my sample. The result reveals that 17 percent of communities are pre-
dicted to have more than one claim in a given year (i.e., 83 percent of community-year observations
are predicted to have zero claims). Note, while 83 percent is substantially lower than 95 percent as
discussed in Section 3, this is a direct consequence of sample restriction: as I discuss in detail in Sec-
tion 4.1, I remove floods with size 50 or above from my analysis for various economic and statistical
reasons. When I undertake the same calculation without imposing these sample restrictions, I find
that 86 percent of community-year observations have zero claims, a figure consistent with the 83
percent calculated based on Kousky and Michel-Kerjan (2015).

For block population, Bureau of the Census (1994) reports that a substantial number of blocks
have zero population, with state-level proportions ranging from 14 percent (RI) to 65 percent (WY),
and a median value of 31 percent (WA). In my sample, the numbers are slightly different at 17 per-
cent for RI and 26 percent for WA (WY is a non-disclosure state). A minor discrepancy is not sur-
prising given that blocks not included in the digitized flood map are excluded from the analysis.

Flood map revision data. According to the Community Map History from the Flood Insurance
Study (FIS) reports, 10.5% of communities in my sample revised their flood maps during the sam-
ple period—spanning 10 years before and after each state’s disclosure policy change. While this
figure may seem too low in comparison to other studies, such as Weill (2023), which, in Figure 2.A,
suggests that at least twice as many geographic units experienced a map revision by 2020, this dis-
crepancy can largely be attributed to differences in sample periods. Weill (2023) primarily focuses
on map revisions during the 2010s, while my primary sample period includes the 1990s and 2000s,
which had significantly fewer revisions. As shown in Appendix Figure B.1, which plots the distri-
bution of flood map revision years from the FIS reports, the number of revisions notably increased
in the 2010s. In fact, 84% of communities in my sample revised their flood maps at least once over
1980—2020.
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Figure B.1: The Number of Communities with Flood Map Revisions by Year. This figure illustrates the
number of communities with flood map revision from 1980 to 2020 using Community Map History from the
Flood Insurance Study (FIS) reports.

Further, FEMA’s Compendium of Map Updates (Hino and Burke 2021) seems to document any
changes made in a given year. For example, in 2009, communities 371038, 42027C, 21189C, and
17083C are all listed in the compendium as having map updates, but the corresponding FIS reports
indicate that these maps were created for the first time. Since my goal is to account for potential
changes in flood zones delineated in the Q3 flood map, I focus exclusively on map revisions. The
Community Map History data from the FIS reports is therefore more appropriate for this purpose.

C Appendix C: Further Results on the Disclosure and Homebuyer
Responses

C.1 Disclosure and Flood Insurance Take Up

To evaluate the impact of the disclosure requirement on flood insurance take up, I collect the number
of flood insurance policies at the National Flood Insurance Program (NFIP) community level for
1982–2011.37 The empirical approach is identical to equation (5).
In Appendix Table C.1 column (1), I show that the disclosure policy lowers the probability of having
at least one flood insurance policy in high-risk communities relative to low-risk communities by 0.01
(or 1.3 percent from the baseline of 0.84). Column (4) indicates the intensive margin effect of the
disclosure policy on the number of insurance policies is also small at –5 percent. Further, columns (2)
and (5), I show that removing communities that have experienced map updates during the sample
period produces somewhat attenuated but similar results as columns (1) and (4). Given the esti-
mated coefficients, flood insurance does not seem to be the primary margin homebuyers respond to
the disclosure policy.

In columns (3) and (6), I estimate a difference-in-differences, as opposed to a triple difference,
version of equation 5 for high-risk communities to evaluate the impact of the disclosure policy on
the absolute count of flood insurance policies. The estimates in columns (3) and (6) suggest that

37For the 1982–2007 period, I leverage data from Gallagher (2014). For the 2009–11 period, I use publicly available
NFIP policy data from FEMA. For 2008, I leverage policy counts data that I acquired through Freedom of Information
Act requests.
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Table C.1: The Effect of Discosure on Flood Insurance Take-Up

Prob. of Any Insurance Log Insurance
(1) (2) (3) (4) (5) (6)

High SFHA × Disclosure × Post −.012 −.010 −.048 −.029
(.012) (.013) (.062) (.062)

Disclosure × Post .021 .081
(.013) (.083)

Avg D.V. 0.897 0.89 0.937
State × Year × Stack FE X X X X
Year × Stack FE X X
Community × Stack FE X X X X X X

Sample All No Map
Update High Risk All No Map

Update High Risk

Num. obs. 239471 214928 239471 214742 191251 214742
Note: Columns (1), (2), (4), and (5) are produced from equation (5) using community-level NFIP data. For columns (3) and (6), a
parsimonious version of equation (5) that ignores high vs. low flood risk is used. In columns (2) and (5), communities with flood
map updates are excluded. Columns (3) and (6) are estimated using high flood risk communities. Standard errors are clustered at
the state level. ∗p < 0.1; ∗∗p < 0.05; ∗∗∗p < 0.01.

individuals residing in high risk areas do not seem to reduce flood insurance purchases following the
disclosure requirement, even though the relative decline compared to low-risk areas is documented
in columns (1) and (4). These findings imply that the damage reduction effect in Section 4.2 is not
merely an artifact of smaller flood insurance counts.
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Figure C.1: The Effect of Disclosure on the Probability of Having Any Flood Insurance. This figure depicts
the impact of disclosure on the probability of having any flood insurance policy at the community level using
an event study version of equation (5). The error bar represents the 95% confidence interval.

In Appendix Figure C.1, I plot the differential impact of disclosure policy on the probability of
having flood insurance for high-risk communities in event time using an event study version of equa-
tion (5). The estimated coefficients do not show economically meaningful changes in the probability
of flood insurance take up after the policy change.
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C.2 Robustness Checks with Difference-in-Discontinuity Results

In this section, I conduct more formal robustness tests. For the first issue—time-varying
confounders—I conduct three additional tests. First, I replicate Table 5.1 for five placebo
states. If my findings are driven by concurrent policy changes rather than the disclosure, the placebo
states should show similar effects. However, Appendix Table C.2 reveals no evidence of reduced
population or increased vacancy rates in high-risk areas for the placebo states. Also, as there are
only five placebo states, I use wild bootstrap for inference and report p.values in parentheses.

Table C.2: The Effect of Discosure on Net Population Flow (Placebo States)

Log
Population

Prob. of Any
Population Vacancy Rate

(1) (2) (3)
SFHA × Post .040 −.001 .000

(.601) (.899) (.987)
Avg D.V. (Within BW) 0.659 0.089
Bandwidth 459 452 324
Num. obs. 169094 253533 130398
Note: This table is produced from equation (6). Columns (1)–(3) are estimated using the
decennial census block-level data in 1990, 2000, 2010, and 2020. Bootstrapped p.values
are reported in parentheses. ∗p < 0.1; ∗∗p < 0.05; ∗∗∗p < 0.01.

Instead of running a separate regression for the placebo states as in Appendix Table C.2, in Ap-
pendix Table C.3, I modify equation (6) to incorporate placebo states as additional control units.
Specifically, I fully interact the right-hand side of equation (6) with Rs = 1, an indicator for ever-
disclosed status. The coefficient of Rs ∗ Tst ∗Dbs captures the disclosure impact, while controlling for
potential time-varying changes at the border (i.e., differential trends between SFHA and non-SFHA
areas). Appendix Table C.3 shows that the point estimates for log of population and vacancy rates
are nearly identical to those in Table 5.1, although the results are underpowered, perhaps due to the
increased number of parameters.

Table C.3: The Effect of Discosure on Net Population Flow (Fully Interact)

Log
Population

Prob. of Any
Population Vacancy Rate

(1) (2) (3)
SFHA × Disclosure × Post −.107 −.001 .010

(.087) (.005) (.010)
Avg D.V. (Within BW) 0.67 0.095
Bandwidth 278 138 254
Num. obs. 1913275 1588398 1765316
Note: This table is produced with an estimating equation that fully interacts the right-hand side
of equation (efeq:diffdisc) with Rs = 1, an indicator for ever-disclosed status. Columns (1)–(3)
are estimated using the decennial census block-level data in 1990, 2000, 2010, and 2020. Standard
errors are clustered at the state level. ∗p < 0.1; ∗∗p < 0.05; ∗∗∗p < 0.01.

Second, I allow time-varying discontinuity at the SFHA border to more directly control for
confounding policy changes. For this, I estimate Ybst = δ0 + δ1Xbs + δ2Dbs + δ3XbsDbs +∑

t={1990,2000,2010,2020}Gt[δt
0 + δt

1Xbs + δt
2Dbs + δt

3XbsDbs] + Tst[δ4 + δ5Xbs + δ6Dbs + δ7XbsDbs] + ϵbst
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where Gt is an indicator that takes 1 if the time period is in t = {1990, 2000, 2010, 2020} and the
rest of the notations follow equation (6). The coefficient of interest is δ6 as before. Appendix Table
C.4 columns (1) and (3) shows that if anything, the effect size is much larger (in magnitude) with
time-varying discontinuities. One exception is column (2), which shows that the policy has a positive
impact on the probability of having any population. However, when compared with the impact on
placebo states in column (5), the net effect still seems to be negative.

Table C.4: The Effect of Discosure on Net Population Flow (Time Varying Discontinuity)

Log
Population

Prob. of Any
Population

Vacancy
Rate

Log
Population

Prob. of Any
Population

Vacancy
Rate

(1) (2) (3) (4) (5) (6)
SFHA × Post −.289 .260 .018 .811 .492 −.061

(.043) (.000) (.476) (.309) (.010) (.251)
Group Treated Treated Treated Placebo Placebo Placebo
Avg D.V. 0.675 0.095 0.659 0.089
Bandwidth 301 138 262 459 452 324
Num. obs. 1900591 1331286 1685653 167160 225007 128772
Note: This table is produced from equation in footnote 33. Columns (1)-(3) show results from the ever-disclosed states whereas
columns (4)-(6) report results from placebo states. P.values, which are calculated using clustered standard error for columns (1)–(3)
and bootstrapping for columns (2)–(6), are reported in parentheses.

Third, in Appendix Table C.5, I reproduce Table 5.1 after removing blocks that had flood map up-
date(s) during the sample period and find that the conclusion remains unchanged.

Table C.5: The Effect of Discosure on Net Population Flow (Exc. Blocks with Map Revision)

Log
Population

Prob. of Any
Population

Vacancy
Rate

(1) (2) (3)
SFHA × Post −.070∗∗ −.009∗∗∗ .011∗∗∗

(.028) (.003) (.004)
Avg D.V. 0.67 0.098
Bandwidth 301 138 262
Num. obs. 1466190 1146705 1304308
Note: Estimates are based on equation (6) after removing geographic units
that have experienced flood map update. Standard errors are clustered at
the state level. ∗p < 0.1; ∗∗p < 0.05; ∗∗∗p < 0.01.

Regarding the treatment spillovers, it is worth highlighting that the SFHA covers a small area—
median community has only 7.8% of its land in SFHA (Appendix Figure D.4)—making it unlikely
that non-SFHA areas will be significantly “contaminated” by the disclosure policy (Busso et al. 2013,
Alves et al. 2024). Moreover, 7.8% is likely an upper bound given that flood maps do not necessarily
cover low risk areas within a community.
To more formally test potential spillover effects, I reproduce Table 5.1 using a doughnut difference-
in-discontinuity approach with the idea that if there is endogenous sorting near the border, the treat-
ment effect may change without those observations (Cattaneo and Titiunik 2022). Appendix Table
C.6 shows that the estimates remain nearly identical even if I remove blocks within 20 to 40 meters
from the border.
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Table C.6: The Effect of Discosure on Population and Vacancy Rate (Doughnut Specification)

Log
Population

Prob. of Any
Population

Vacancy
Rate

Log
Population

Prob. of Any
Population

Vacancy
Rate

(1) (2) (3) (4) (5) (6)
SFHA × Post −.079∗∗ −.012∗∗ .013∗∗∗ −.080∗∗ −.007 .014∗∗

(.031) (.004) (.004) (.033) (.005) (.006)
Avg D.V. (Within BW) 0.692 0.093 0.704 0.092
Doughnut Size 20 20 20 40 40 40
Num. obs. 1763552 1227096 1549019 1607388 984066 1394047
Note: This table is produced from equation (6) after excluding observations closest to the SFHA border. In columns (1)–(3), doughnut
sizes are 20 meters and in columns (4)–(6) doughnut sizes are 40 meters. Standard errors are clustered at the state level. ∗p < 0.1;
∗∗p < 0.05; ∗∗∗p < 0.01.
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Figure C.2: The Effect of the Disclosure Requirement on Population and Vacancy Rate by Bandwidths and
Control Group Distance Bin. Panels (a)-(c) plot δ̂6 from equation (6) for a range of bandwidths. Panels (d)-(f)
plot δ̂6 from equation (6) for control groups of varying distance. In these panels, the horizontal axis indicates
the distance bin of control group in multiples of variable specific optimal bandwidth (i.e., distance bin r on
x-axis indicates that control group blocks are within (r − 1) and r times optimal bandwidth). In all panels,
the level of observation is census block, which is the smallest census geographical unit. Standard errors are
clustered at the state level.
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Similarly, the policy effect does not diminish even if I expand the bandwidth or use progressively
farther away blocks as control units (Appendix Figure C.2 Panels (a)-(c) and Panels (d)-(f)). Note,
for Panels (d)-(f), I estimate equation (6) using control blocks that are within the distance of (r − 1) ×
optimal bandwidth and r × optimal bandwidth for r ∈ {1, 2, 3, 4, 5}.
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D Appendix D: Additional Tables and Figures

Table D.1: Disclosure Policy Adoption by Year

Policy Change Year Disclosed Disclosed (w/o Flood)

1992 KY, WI
1993 MS, OH, RI, SD
1994 DE, IA, IL, MD, MI, OR, TN, TX ID, NH
1995 NE, OK, WA KS
1996 CT, NC, NV, PA
1998 CA
1999 ME
2002 IN, NY, SC
2003 LA MN

Note:
This table presents the list of states that adopted a disclosure policy by year.
The last column includes states that implemented a disclosure policy without a
question on flood risk.

Back to 2.

Table D.2: Building Age by the SFHA Status

N of Houses (< 5Yrs) N of Houses (> 40Yrs) (%) Houses (< 5Yrs) (%) Houses (> 40Yrs)
(1) (2) (3) (4)

SFHA > 0 119.507∗∗∗ −254.004∗∗∗ .057∗∗∗ −.192∗∗∗

(13.437) (29.864) (.007) (.034)
Constant 73.182∗∗∗ 661.449∗∗∗ .041∗∗∗ .471∗∗∗

(24.349) (54.139) (.010) (.053)
Num. obs. 32391 32391 31490 31490
Note: This table compares the proportion of older and newer housing stocks in census tracts with and without SFHA areas within a tract using the
1990 decennial census data. Standard errors are clustered at the state level. ∗p < 0.1; ∗∗p < 0.05; ∗∗∗p < 0.01.

Back to 2.
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Table D.3: State Characteristics in 1990 by Disclosure Status

Ever/Early Never/Late Difference

Variables Mean SE Mean SE Mean P.Value

Panel A: Ever vs. Never States
Population (millions) 6.57 1.31 3.43 0.651 3.143 0.048
Median Age 33.04 0.204 32.82 0.409 0.22 0.616
(%) White 0.827 0.019 0.879 0.018 -0.053 0.051
(%) BA 0.121 0.005 0.129 0.006 -0.007 0.324
Unemployment Rate 0.06 0.003 0.061 0.002 -0.001 0.773
GDP (billions) 152 34.38 74 14.95 78 0.057
N Housing Units (millions) 2.66 0.506 1.47 0.291 1.187 0.059
(%) Vacancy 0.095 0.005 0.132 0.008 -0.037 0
Democratic Party Vote Share 0.455 0.01 0.425 0.012 0.03 0.06
Average Flood Damage per Housing Unit 3.86 1.99 0.964 0.497 2.891 0.199
Flood Size 6.34 0.805 3.58 0.713 2.76 0.015
(%) in SFHA 0.16 0.012 0.132 0.013 0.028 0.117

Panel B: Early (Before 1994) vs. Late (After 1994) States
Population (millions) 5.53 1.29 7.8 2.42 -2.274 0.397
Median Age 33.07 0.286 33 0.302 0.071 0.865
(%) White 0.842 0.026 0.808 0.027 0.034 0.374
(%) BA 0.119 0.006 0.124 0.008 -0.005 0.592
Unemployment Rate 0.061 0.004 0.06 0.004 0.001 0.89
GDP (billions) 119 29.72 191 66 -72 0.306
N Housing Units (millions) 2.25 0.527 3.12 0.917 -0.87 0.402
(%) Vacancy 0.095 0.007 0.096 0.007 -0.001 0.908
Democratic Party Vote Share 0.47 0.013 0.438 0.014 0.031 0.118
Average Flood Damage per Housing Unit 3.81 2 3.9 3.75 -0.09 0.983
Flood Size 6.17 1.01 6.55 1.34 -0.388 0.816
(%) in SFHA 0.157 0.01 0.163 0.023 -0.006 0.788

Note:
This table compares key characteristics of ever-disclosed vs. never-disclosed (Panel A) and
early-disclosed vs. late-disclosed (Panel B) states. All variables are as of 1990 except for the
Democratic party vote share variable, which comes from 1988 presidential election. The last
two columns show mean differences and p-values.

Back to 4.1.
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Table D.4: The Effect of Disclosure on Flood Damage

Prob. of Any Damage Log Damage
(1) (2) (3) (4)

Flood Size 2-5 .008 .007 .010∗ .144
(.006) (.007) (.006) (.175)

Flood Size 5-10 .033∗∗∗ .036∗∗∗ .032∗∗∗ .416∗∗∗

(.008) (.007) (.010) (.069)
Flood Size 10-20 .056∗∗∗ .072∗∗∗ .041∗∗∗ 1.124∗∗∗

(.011) (.014) (.009) (.100)
Flood Size 20-30 .070∗∗∗ .100∗∗∗ .039∗∗∗ 2.025∗∗∗

(.018) (.026) (.009) (.286)
Flood Size 30-50 .078∗∗∗ .105∗∗∗ .041∗ 1.574∗∗∗

(.029) (.033) (.025) (.358)
Disclosure × Size 2-5 .021∗∗ .032∗∗ .009∗∗ −.030

(.009) (.016) (.004) (.177)
Disclosure × Size 5-10 .044∗∗∗ .061∗∗∗ .027∗∗∗ −.087

(.008) (.015) (.007) (.149)
Disclosure × Size 10-20 .087∗∗∗ .107∗∗∗ .062∗∗∗ −.038

(.009) (.017) (.011) (.080)
Disclosure × Size 20-30 .111∗∗∗ .138∗∗∗ .077∗∗∗ −.295∗∗

(.014) (.026) (.012) (.137)
Disclosure × Size 30-50 .114∗∗∗ .131∗∗∗ .097∗∗∗ .031

(.026) (.030) (.029) (.176)
Post × Size 2-5 .019∗ .027∗∗ .010 .577∗∗∗

(.011) (.012) (.009) (.210)
Post × Size 5-10 .035∗∗ .041∗∗ .028∗ .607∗∗∗

(.014) (.016) (.016) (.157)
Post × Size 10-20 .089∗∗∗ .092∗∗∗ .085∗∗∗ .306∗∗∗

(.019) (.017) (.023) (.088)
Post × Size 20-30 .114∗∗∗ .119∗∗∗ .106∗∗ −.174

(.041) (.044) (.054) (.294)
Post × Size 30-50 .159∗∗∗ .203∗∗∗ .126∗∗ .850∗∗∗

(.051) (.055) (.054) (.194)
Post × Disclosure × Size 2-5 −.035∗ −.056∗∗ −.012 −.134

(.021) (.028) (.011) (.300)
Post × Disclosure × Size 5-10 −.042∗ −.055∗ −.030 .164

(.022) (.030) (.018) (.243)
Post × Disclosure × Size 10-20 −.076∗∗ −.090∗ −.057∗∗ .051

(.037) (.052) (.023) (.210)
Post × Disclosure × Size 20-30 −.082∗ −.131∗∗∗ −.019 .467

(.049) (.043) (.070) (.554)
Post × Disclosure × Size 30-50 −.119∗ −.173∗∗ −.071 −.334∗∗

(.063) (.078) (.055) (.133)
Sample All High SFHA Low SFHA Damage > 0
Year × Stack FE X X X X
Community × Stack FE X X X X
Num. obs. 529394 254989 274405 22319
Note: This table shows the full sets of coefficients for Table 4.1. ∗p < 0.1; ∗∗p < 0.05; ∗∗∗p < 0.01.

Back to 4.2.
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Table D.5: The Effect of Disclosure on Flood Damage (Placebo States)

Prob. of Any Damage
(1) (2) (3)

Post × Disclosure (Size 2-30) −.015∗∗∗ −.035∗∗ .001
(.005) (.015) (.008)

Post × Disclosure (Size 30-50) .223∗∗∗ .246∗∗∗ .185∗∗∗

(.053) (.083) (.049)
Sample All High SFHA Low SFHA
Year × Stack FE X X X
Community × Stack FE X X X
Num. obs. 31246 14984 16262
Note: This table repeats Table 4.1 using the placebo states. The dependent variables in columns
(1) to (3) are the probability of having any flood damage. Column (1) is based on the entire set
of communities while in columns (2) and (3), I repeat (1) using the subsample of communities
with an above median SFHA ratio and below median SFHA ratio. Spatial-HAC standard errors
that allow spatial correlation of up to 500 miles are estimated for inference for columns (1)–(3).
∗p < 0.1; ∗∗p < 0.05; ∗∗∗p < 0.01.

Back to 4.2.

Table D.6: The Effect of Disclosure on Flood Damage (Exc. Communities with Map Revision)

Prob. of Any Damage Log Damage
(1) (2) (3) (4)

Post × Disclosure (Size 2-5) −.032 −.052 −.010 .030
(.022) (.032) (.009) (.148)

Post × Disclosure (Size 5-10) −.036 −.050 −.023 .188
(.024) (.036) (.018) (.287)

Post × Disclosure (Size 10-20) −.062∗ −.075 −.045∗∗∗ .163
(.037) (.059) (.017) (.259)

Post × Disclosure (Size 20-30) −.061 −.120∗∗∗ .007 .396
(.044) (.043) (.055) (.658)

Post × Disclosure (Size 30-50) −.121∗ −.170∗∗ −.075 −.617∗∗∗

(.067) (.073) (.069) (.137)
Annual Effect -0.023* -0.036* -0.011 0.045

(0.014) (0.02) (0.008) (0.075)

Sample All High SFHA Low SFHA Damage > 0
Year × Stack FE X X X X
Community × Stack FE X X X X
Num. obs. 483852 227168 256684 18974
Note: This table repeats Table 4.1 after removing communities that have experienced map updates during the sam-
ple period. Spatial-HAC standard errors that allow spatial correlation of up to 500 miles are estimated for inference.
∗p < 0.1; ∗∗p < 0.05; ∗∗∗p < 0.01.

Back to 4.2.
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Table D.7: The Effect of Disclosure on Flood Damage (State Level Clustering)

Prob. of Any Damage Log Damage
(1) (2) (3) (4)

Post × Disclosure (Size 2-5) −.035 −.056∗ −.012 −.134
(.021) (.032) (.010) (.399)

Post × Disclosure (Size 5-10) −.042∗ −.055∗ −.030∗ .164
(.021) (.030) (.016) (.284)

Post × Disclosure (Size 10-20) −.076∗ −.090 −.057∗ .051
(.042) (.064) (.029) (.268)

Post × Disclosure (Size 20-30) −.082 −.131∗ −.019 .467
(.059) (.074) (.067) (.585)

Post × Disclosure (Size 30-50) −.119 −.173∗ −.071 −.334
(.071) (.095) (.057) (.335)

Annual Effect -0.027* -0.039* -0.014 -0.003
(0.013) (0.019) (0.009) (0.147)

Sample All High SFHA Low SFHA Damage > 0
Year × Stack FE X X X X
Community × Stack FE X X X X
Num. obs. 529394 254989 274405 22319
Note: This table repeats Table 4.1 with state level clustering. ∗p < 0.1; ∗∗p < 0.05; ∗∗∗p < 0.01.

Back to 4.2.

Table D.8: The Effect of Disclosure on Flood Damage (Flood Size 2-100)

Prob. of Any Damage Log Damage
(1) (2) (3) (4)

Post × Disclosure (Size 2-5) −.036∗ −.058∗ −.013 −.124
(.021) (.032) (.010) (.406)

Post × Disclosure (Size 5-10) −.043∗∗ −.056∗ −.032∗∗ .175
(.020) (.029) (.015) (.280)

Post × Disclosure (Size 10-20) −.081∗ −.096 −.061∗ .104
(.041) (.064) (.030) (.276)

Post × Disclosure (Size 20-40) −.093 −.138∗ −.039 .220
(.064) (.073) (.071) (.499)

Post × Disclosure (Size 40-100) −.146∗∗∗ −.123 −.174∗∗∗ −.516
(.050) (.081) (.053) (.337)

Annual Effect -0.027** -0.037** -0.016** -0.005
(0.012) (0.016) (0.008) (0.104)

Sample All High SFHA Low SFHA Damage > 0
Year × Stack FE X X X X
Community × Stack FE X X X X
Num. obs. 529198 254833 274365 23238
Note: This table repeats Table 4.1 with alternative flood bins. ∗p < 0.1; ∗∗p < 0.05; ∗∗∗p < 0.01.
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Table D.9: The Effect of Disclosure on Flood Damage (Treatment Until 1998)

Prob. of Any Damage Log Damage
(1) (2) (3) (4)

Post × Disclosure (Size 2-5) −.037∗ −.058∗ −.015∗ −.103
(.019) (.030) (.008) (.437)

Post × Disclosure (Size 5-10) −.043∗∗ −.053∗ −.034∗∗ .203
(.020) (.030) (.014) (.316)

Post × Disclosure (Size 10-20) −.073∗ −.089 −.048∗ .105
(.041) (.064) (.026) (.274)

Post × Disclosure (Size 20-40) −.110∗ −.164∗∗ −.040 .667
(.055) (.071) (.066) (.617)

Post × Disclosure (Size 40-100) −.149∗∗ −.201∗∗ −.103∗ −.242
(.071) (.095) (.059) (.396)

Annual Effect -0.029** -0.041** -0.016* 0.025
(0.013) (0.017) (0.009) (0.129)

Sample All High SFHA Low SFHA Damage > 0
Year × Stack FE X X X X
Community × Stack FE X X X X
Num. obs. 501078 240953 260125 20369
Note: This table repeats Table 4.1 by using states treated after 1998 as control (i.e., not-yet-treated) states only. ∗p <
0.1; ∗∗p < 0.05; ∗∗∗p < 0.01.
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FORM 108 (05/2019) COPYRIGHT ILLINOIS REALTORS® Page 1 of 4 

Illinois REALTORS® 
RESIDENTIAL REAL PROPERTY DISCLOSURE REPORT 

(765 ILCS 77/35) 

NOTICE: THE PURPOSE OF THIS REPORT IS TO PROVIDE PROSPECTIVE BUYERS WITH INFORMATION ABOUT MATERIAL 
DEFECTS IN THE RESIDENTIAL REAL PROPERTY. THIS REPORT DOES NOT LIMIT THE PARTIES’ RIGHT TO CONTRACT FOR THE 
SALE OF RESIDENTIAL REAL PROPERTY IN “AS IS” CONDITION. UNDER COMMON LAW, SELLERS WHO DISCLOSE MATERIAL 
DEFECTS MAY BE UNDER A CONTINUING OBLIGATION TO ADVISE THE PROSPECTIVE BUYERS ABOUT THE CONDITION OF 
THE RESIDENTIAL REAL PROPERTY EVEN AFTER THE REPORT IS DELIVERED TO THE PROSPECTIVE BUYER. COMPLETION OF 
THIS REPORT BY THE SELLER CREATES LEGAL OBLIGATIONS ON THE SELLER; THEREFORE SELLER MAY WISH TO CONSULT 
AN ATTORNEY PRIOR TO COMPLETION OF THIS REPORT. 

Property Address:    

City, State & Zip Code: 

Seller’s Name:   

This Report is a disclosure of certain conditions of the residential real property listed above in compliance with the Residential Real Property 
Disclosure Act. This information is provided as of _____________________________, 20___, and does not reflect any changes made or occurring 
after that date or information that becomes known to the seller after that date. The disclosures herein shall not be deemed warranties of any kind by 
the seller or any person representing any party in this transaction. 

In this form, “am aware” means to have actual notice or actual knowledge without any specific investigation or inquiry. In this form, a “material 
defect” means a condition that would have a substantial adverse effect on the value of the residential real property or that would significantly impair 
the health or safety of future occupants of the residential real property unless the seller reasonably believes that the condition has been corrected. 

The seller discloses the following information with the knowledge that even though the statements herein are not deemed to be warranties, 
prospective buyers may choose to rely on this information in deciding whether or not and on what terms to purchase the residential real property. 

The seller represents that to the best of his or her actual knowledge, the following statements have been accurately noted as “yes” (correct), “no” 
(incorrect), or “not applicable” to the property being sold. If the seller indicates that the response to any statement, except number 1, is yes or not 
applicable, the seller shall provide an explanation, in the additional information area of this form. 

YES NO N/A 
1. ___ ___ ___ Seller has occupied the property within the last 12 months. (No explanation is needed.)
2. ___ ___ ___ I am aware of flooding or recurring leakage problems in the crawl space or basement.
3. ___ ___ ___ I am aware that the property is located in a flood plain or that I currently have flood hazard insurance on the property.
4. ___ ___ ___ I am aware of material defects in the basement or foundation (including cracks and bulges).
5. ___ ___ ___ I am aware of leaks or material defects in the roof, ceilings, or chimney.
6. ___ ___ ___ I am aware of material defects in the walls, windows, doors, or floors.
7. ___ ___ ___ I am aware of material defects in the electrical system.
8. ___ ___ ___ I am aware of material defects in the plumbing system (includes such things as water heater, sump pump, water

treatment system, sprinkler system, and swimming pool). 
9. ___ ___ ___ I am aware of material defects in the well or well equipment.
10. ___ ___ ___ I am aware of unsafe conditions in the drinking water.
11. ___ ___ ___ I am aware of material defects in the heating, air conditioning, or ventilating systems.
12. ___ ___ ___ I am aware of material defects in the fireplace or wood burning stove.
13. ___ ___ ___ I am aware of material defects in the septic, sanitary sewer, or other disposal system.
14. ___ ___ ___ I am aware of unsafe concentrations of radon on the premises.
15. ___ ___ ___ I am aware of unsafe concentrations of or unsafe conditions relating to asbestos on the premises.
16. ___ ___ ___ I am aware of unsafe concentrations of or unsafe conditions relating to lead paint, lead water pipes, lead plumbing pipes

or lead in the soil on the premises. 
17. ___ ___ ___ I am aware of mine subsidence, underground pits, settlement, sliding, upheaval, or other earth stability defects on the

premises. 
18. ___ ___ ___ I am aware of current infestations of termites or other wood boring insects.
19. ___ ___ ___ I am aware of a structural defect caused by previous infestations of termites or other wood boring insects.
20. ___ ___ ___ I am aware of underground fuel storage tanks on the property.
21. ___ ___ ___ I am aware of boundary or lot line disputes.
22. ___ ___ ___ I have received notice of violation of local, state or federal laws or regulations relating to this property, which violation

has not been corrected. 
23. ___ ___ ___ I am aware that this property has been used for the manufacture of methamphetamine as defined in Section 10 of the

Methamphetamine Control and Community Protection Act. 

Note: These disclosures are not intended to cover the common elements of a condominium, but only the actual residential real property 
including limited common elements allocated to the exclusive use thereof that form an integral part of the condominium unit. 

Note: These disclosures are intended to reflect the current condition of the premises and do not include previous problems, if any, that the seller 
reasonably believes have been corrected. 

Figure D.1: Example of the Home Seller Disclosure Form (IL)
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Figure D.2: Correlation Between Disclosure Timing and Flood Profiles. These figures plot the disclosure policy
timing against (a) past flood damage, (b) past flood damage probability, (c) ex-ante flood risk profile, and (d)
flood policy (timing of participation to the Community Ratings System). Panel (e) plots the average flood size
in event time. Values on the y-axis is pooled across all states with the same treatment or event year.
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Figure D.3: Sample Flood Insurance Rate Map (Borough of Stonington, CT)

Back to 2.

46



0.0

0.1

0.2

0.3

Median: 0.078 0.25 0.5 0.75 1
Proportion of SFHA in a Community

F
re

qu
en

cy

Figure D.4: Histogram of the Proportion of the SFHA at the Community Level. The plot shows the distribu-
tion of the SFHA ratio for the 7,821 communities that are on the Q3 map (first generation of digitized flood
map) and in the 26 ever-disclosed states.
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Figure D.5: The Effect of Disclosure on the Damage Function with 95% Confidence Intervals. These plots
reproduce Figure 4.1 with corresponding confidence intervals.
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Figure D.6: The Effect of Disclosure on the Damage in Event Time. This figure depicts ˆβ30−50
4,t for flood size of

30-50 in event time t where the dependent variable is probability of having any damage. Endpoint restrictions
are imposed at event time -5 and 4. The error bar represents the 95% confidence interval.
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